Supporting Information

Efficient testosterone production by engineered Pichia pastoris co-expressing

human 17β-hydroxysteroid dehydrogenase type 3 and Saccharomyces cerevisiae

glucose 6-phosphate dehydrogenase with NADPH regeneration

Minglong Shao¹, Xian Zhang¹, Zhiming Rao^{1*}, Meijuan Xu¹, Taowei Yang¹, Hui Li²,

Zhenghong Xu², Shangtian Yang³

¹ The Key Laboratory of Industrial Biotechnology, Ministry of Education; Laboratory

of Applied Microorganisms and Metabolic Engineering, School of Biotechnology,

Jiangnan University, Wuxi, Jiangsu Province 214122, P. R. China

² Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu Province 214122, P. R. China

³ Department of Chemical and Biomolecular Engineering, The Ohio State University,

Columbus, Ohio 43210, USA

* Corresponding Author: Zhiming Rao

Tel: +86-510-85916881

E-mail: raozhm@jiangnan.edu.cn

Present address: School of Biotechnology, Jiangnan University, 1800 Lihu Avenue,

Wuxi, Jiangsu, 214122, P. R. China

Supplemental materials

Supplementary Table 1. Strains, plasmids and primers used in this study.

Name	Description	Sources		
Strains				
Escherichia coli JM109	recA1, endA1, gyrA96, thi-1, hsd R17(r_k -	Invitrogen		
	m_k^+)supE44			
Saccharomyces cerevisiae	Source of ZWF1 gene	This lab		
Pichia pastoris GS115	Host of 17β-hsd3 or ZWF1	Invitrogen		
P. pastoris/CK	P. pastoris GS115 electro-transformed with	This study		
	pPIC3.5K and pPICZ α as control			
<i>P. pastoris</i> /17β-HSD3 _{CK}	P. pastoris GS115 over-expressing the	This study		
	uncodon-optimized 17β -hsd3 gene			
P. pastoris/17β-HSD3	P. pastoris GS115 over-expressing the	This study		
	codon-optimized 17β -hsd3 gene			
<i>P. pastoris</i> /17β-HSD3-	P. pastoris GS115 over-expressing the	This study		
G6PDH	codon-optimized 17β -hsd3 and ZWF1 genes			
Plasmids				
pUC57- <i>17β-hsd3</i> _{CK}	The uncodon-optimized 17β -hsd3 gene	Shanghai Sangon		
	delivered by pUC57	Biological Engineering		
		Technology & Services		
		Co. Ltd		
pUC57- <i>17β-hsd3</i>	The codon-optimized 17β -hsd3 gene	Shanghai Sangon		
	delivered by pUC57	Biological Engineering		
		Technology & Services		
		Co. Ltd		
pPIC3.5K	9.0 kb, Amp ^R	Invitrogen		
pPICZα	3.6 kb, Zeocin ^R	Invitrogen		
pPIC3.5K-17β-hsd3 _{CK}	9.9 kb, pPIC3.5K containing the uncodon-	This study		
	optimized 17β -hsd3 gene, Amp ^R			
pPIC3.5K- <i>17β-hsd3</i>	9.9 kb, pPIC3.5K containing the codon-	This study		
	optimized 17β -hsd3 gene, Amp ^R			

pPICZa-ZWF1	5.1 kb, pPICZ α containing ZWF1 gene, This study			
	Zeocin ^R			
Primers 5'-3'				
P1	CG <u>GGATCC</u> ATGGGGGGACGTCCTGGAACAG (BamH I)			
P2	CG <u>GAATTC</u> CTA GTGGTGGTGGTGGTGGTGGTG CCTGACCTTGG			
	TGTTG (EcoR I)			
Р3	CG <u>GGATCC</u> ACCATGGGAGATGTACTAGAG (BamH I)			
P4	CG <u>GAATTC</u> TTA GTGGTGGTGGTGGTGGTGGTG ACGAACTTTGG			
	TATTC (EcoR I)			
P5*	CTG <u>TTCGAA</u> ACGATGAGTGAAGGCCCCGTCAAATTTGAAAA			
	AAATACCG (BstB I)			
P6*	CACG <u>CTCGAG</u> CTAATTATCCTTCGTATCTTCTGGC (Xho I)			
Notes: Amp ^R ampicillin-resistant, Zeocin ^R zeocin-resistant, the restriction enzyme				

sites were underlined, and the His-Taq coding region were bold typed.

*P5, P6 the primers were in accordance with that reported by Geng et al. [1].

Step	Total	Total	Specific activity	Purification	Yield (%)
	activity* (U)	protein (mg)	(U mg ⁻¹)	(fold)	
Crude cell extract	201.32	39.32	5.12	1.00	100.00
HisTrap [™] HP column	250.62	20.13	12.45	2.43	62.24

Supplementary Table 2. Summary of the purification procedure for the recombinant 17β -HSD3.

Notes: *One unit of enzyme activity defined as the amount of enzyme required to oxidize 1 μ mol of AD to produce 1 μ mol of TS at 37°C and pH 7.5 per min.

Supplementary Fig. 1

Supplementary Fig. 1. SDS-PAGE analysis of the expression of 17β-HSD3 and G6PDH in *P. pastoris* GS115. Lanes: (M) Protein marker; Lane 1, crude cell extracts of *P. pastoris*/CK; Lane 2, crude cell extracts of *P. pastoris*/17β-HSD3; Lane 3, crude cell extracts of *P. pastoris*/17β-HSD3-G6PDH; Lane 4, purified 17β-HSD3.

Supplementary Fig. 2

Supplementary Fig. 2. HPLC analysis of AD transformation. (A) The standard sample of AD; (B) The standard sample of TS; (C) The product by strain *P. pastoris*/17 β -HSD3_{CK} (black line), *P. pastoris*/17 β -HSD3 (pink line) and *P. pastoris*/17 β -HSD3-G6PDH (blue line).

References

1. Geng YW, Zhang RZ, Xu Y, Wang SS, Sha C, et al. (2011) Coexpression of a carbonyl reductase and glucose 6-phosphate dehydrogenase in *Pichia pastoris* improves the production of (S)-1-phenyl-1, 2-ethanediol. Biocatalysis and Biotransformation 29: 172-178.