## **Supporting Information**

# Instantly High-Selectivity Cd-MOF Chemosensor for Naked-Eye Detection of Cu(II) Approved by *in situ* Microcalorimetry

Chengfang Qiao,<sup>a,b</sup> Xiaoni Qu,<sup>a</sup> Qi Yang,<sup>a</sup> Qing Wei,<sup>a</sup> Gang Xie,<sup>a</sup> Sanping Chen,<sup>\*a</sup> Desuo Yang<sup>c</sup>

- [a] Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
- [b] Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, P. R. China
- [c] College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China

Corresponding author

Prof. Sanping Chen

E-mail: sanpingchen@126.com

## **Table of contents**

- **Fig. S1** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of triacetyltriphenylamine.
- **Fig. S2** <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) spectrum of tricarboxyltriphenylamine (H<sub>3</sub>L).
- Fig. S3 <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) spectrum of tricarboxyltriphenylamine (H<sub>3</sub>L).
- Fig. S4 3D framework of 1 (a) assembled *via* 2D wave-like double sheet structures (b), which were generated by two kinds of L<sup>3-</sup> ligands (bule and pink balls) bridging pentanuclear Cd(II) cluster nodes (green balls). All H atoms, counter ions and solvent molecules are omitted for clarity.
- **Fig. S5** View of the 3D framework of **1** shown in Ball-Stick mode (a) and Spacefill mode (b) along the *a*-axis. All H atoms, counter ions and solvent molecules are omitted for clarity.
- **Fig. S6** View of the 3D framework of **1** shown in Ball-Stick mode (a) and Spacefill mode (b) along the *b*-axis. All H atoms, counter ions and solvent molecules are omitted for clarity.
- **Fig. S7** View of the 3D framework of **1** shown in Ball-Stick mode (a) and Spacefill mode (b) along the *c*-axis. All H atoms, counter ions and solvent molecules are omitted for clarity.
- Fig. S8 Powder XRD patterns of (a) 1, 1', 1 DMA and 1 CH<sub>3</sub>OH; (b) 2 and its simulated one.
- Fig. S9 The corresponding Gram–Schmidt signal of  $1 \cdot CH_3OH$  and  $1 \cdot DMA$ .
- Fig. S10 Gas phase IR spectra corresponding to the maximum of the Gram–Schmidt signal in Fig.9 of (a) 1·CH<sub>3</sub>OH and (b) 1·DMA as well as reference spectra of (c) methanol and (d) N-dimethylacetamide.
- Fig. S11 TG curves for 1, 1 · CH<sub>3</sub>OH and 1 · DMA under a nitrogen atmosphere.
- **Fig. S12** (a) Variation of heat-flow as a function of time, 1-CH<sub>2</sub>Cl<sub>2</sub>, 1-CHCl<sub>3</sub>, 1-CCl<sub>4</sub>, 1-benzene, and 1-cyclohexane, (b) 1·CH<sub>3</sub>OH and 1·DMA.
- **Fig. S13** Changes in color of addition of various metal ions (1×10<sup>-4</sup> mol L<sup>-1</sup>, 10 mL) to the crystals of **1**.
- Fig. S14 (a) Coordination environments of the Cd(II) and Cu(II) ions in 2. Symmetry code: A, x+1, -y, -z+2; (b) Two different types of coordination modes of L<sup>3-</sup> ligand in 2. Symmetry code: A, x, y, z+1; B, -x+1, y-1/2, -z+5/2; C, -x+1, y+1/2, -z+3/2; D, x+1, y, z; (c) View of the 3D framework of 2 shown in Ball-Stick mode along the *c*-axis. All H atoms, counter ions and solvent molecules are omitted for clarity.
- Fig. S15 (a) Variation of heat-flow as a function of time,  $c(Cu^{2+})=1\times 10^{-5}$  mol L<sup>-1</sup>, (b)  $c(Cu^{2+})=1\times 10^{-6}$  mol L<sup>-1</sup>.
- **Fig. S16** Change in absorption intensity of **1** (1×10<sup>-5</sup> M) in DMSO upon addition of various metal ions (10 mM).
- Fig. S17 Emission spectra of 1 in DMSO with Cu(NO<sub>3</sub>)<sub>2</sub> at different concentrations.
- Table S1 Crystal data and refinement parameters for compounds 1, 2, 1 · CH<sub>3</sub>OH and 1 · DMA.

### 1. Experimental

#### 1.1. Materials and instrumentation

The H<sub>3</sub>L ligand was synthesized by the literature method.<sup>[S1]</sup> All other reagents were reagent grade and used as purchased without further purification. <sup>1</sup>H NMR spectra were recorded at 400 MHz and <sup>13</sup>C NMR spectrum was recorded on Varian INOVA 500M spectrometer. Tetramethylsilane (TMS) served as internal reference ( $\delta = 0$ ) for <sup>1</sup>H NMR, and DMSO-*d*<sub>6</sub> served as internal standard ( $\delta$  = 39.51) for <sup>13</sup>C NMR. Elemental analyses of C, H, and N were performed on a Vario EL III analyzer fully automated trace element analyzer. The FT-IR spectra were recorded on a Nicolet Magna 750 FT-IR spectrometer using KBr pellets in the range of 4000-400 cm<sup>-1</sup>. Fluorescent data were collected on an Edinburgh FLS920 TCSPC fluorescence spectrophotometer equipped with 450W xenon light. Inductively coupled plasma (ICP) analysis was performed on a Perkin-Elmer Optima 3300 DV ICP spectrometer. Thermogravimetric analysis was investigated using a thermogravimetric analyzer at first. The gaseous products from the samples during heating under N2 atmosphere were analyzed by an online FTIR (Bruker, Vertex70) with a 200 ml gas cell in the range of 400-4000 cm<sup>-1</sup>. The phase purity of the bulk sample was verified by X-ray powder diffraction (XRPD) radiation ( $\lambda = 1.5406$  Å), with a scan speed of 5° min<sup>-1</sup> and a step size of  $0.02^{\circ}$  in 2 $\theta$ . The calorimetric experiment was performed by using a RD496-III type microcalorimeter.<sup>[S2]</sup> The calorimetric constants at 295.15, 298.15, 301.15, 304.15, and 307.15 K were determined, by the Joule effect, to be  $63.799 \pm 0.025$ ,  $63.901 \pm 0.030$ ,  $64.000 \pm 0.026$ ,  $64.075 \pm 0.038$ , and  $64.203 \pm 0.043 \ \mu\text{V} \cdot \text{mW}^{-1}$ , respectively. The enthalpy of the dissolution of KCl (spectral purity) in deionized water was measured to be  $17.238 \pm 0.048$  kJ  $\cdot$ mol<sup>-1</sup>, which is in good agreement with the value of  $17.241 \pm 0.018$  kJ  $\cdot$  mol<sup>-1</sup> from ref [S3]. The accuracy is 0.02%, and the precision is 0.3%, which indicates that the calorimetric system is accurate and reliable. The reaction solvent (5 mL) was put into a stainless steel sample cell in a 15 mL container.<sup>[S4]</sup> At equilibrium, the containers of the single crystal samples (20-22 mg) were pushed down simultaneously. As a result, the crystal solvent was mixed at 298.15 K, and the thermogram of the crystalline-state-liquid guest exchange was recorded.



#### Synthesis of triacetyltriphenylamine

To the solution of AlCl<sub>3</sub> (1.8 g, 13.5 mmol) in 50 ml dry CH<sub>2</sub>Cl<sub>2</sub>, 2.0 ml (28.28 mmol) acetyl chloride in 50 ml dry CH<sub>2</sub>Cl<sub>2</sub> was added dropwisely under 0 °C. The reaction mixture was allowed to warm to room temperature and triphenylamine (1.0 g, 4.0 mmol) in 50 ml dry CH<sub>2</sub>Cl<sub>2</sub> was added. Then the reaction was carried out at room temperature for 24 h. The mixture was poured into ice-water (200 mL), and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 100 mL), the organic layer was washed with water (5 × 100 mL), dried with Na<sub>2</sub>SO<sub>4</sub>. After filtration and removal of the solvent under reduced pressure, the crude product was purified by column chromatography with CH<sub>2</sub>Cl<sub>2</sub> as an eluent to give a yellow solid (1.20 g, 80.8%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  (ppm): 7.91 (d, *J*=8.8, 6H), 7.16 (d, *J*=8.7, 6H), 2.59 (s, 9H).

#### Synthesis of tricarboxyltriphenylamine

3 mL Br<sub>2</sub> were added dropwisely to the solution of NaOH (7 g, 0.18 mol) in 30 ml water on ice bath. The mixture was stirred for 20 min and added dropwisely to a solution of triacetyltriphenylamine (2.0 g, 5.4 mmol) in 50 ml 1, 4-dioxane. Then the reaction mixture was allowed to warm to room temperature over 1 h and further stirred at 50 °C for 12 h. After cooling to r.t., the mixture was put on ice-bath, saturated hydroxylamine hydrochloride was added to deoxidize excessive sub-bromo-sodium. The solution was acidified by HC1 (2M) and the solid product was filtered and dried under vacuum. The crude was recrystallized from acetic acid to afford pure products as a white solid. (1.56 g, 76.5%). Anal. calcd. for C<sub>24</sub>H<sub>21</sub>NO<sub>3</sub>: C, 77.61; H, 5.70; N, 3.77. Found: C, 77.68; H, 5.76; N, 3.71. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>),  $\delta$  (ppm): 12.85 (s, 3H), 7.92 (d, *J*=8.7, 6H), 7.15 (d, *J*=8.7, 6H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  (ppm): 166.81, 149.88, 131.25, 125.93, 123.78.

#### 1.3. Synthesis of $\{[NH_2(CH_3)_2] \cdot [Cd_{2.5}(L)_2(H_2O)] \cdot (H_2O)\}_n$ (1).

A mixture of H<sub>3</sub>L (37 mg, 0.1 mmol), CdSO<sub>4</sub>·8/3H<sub>2</sub>O (51 mg, 0.2 mmol), N,N-dimethylformamide (5 mL), acetone (4 mL) and water (3 mL) were placed in a 25 mL Teflon liner. The resulting mixture was stirred for 30 min at room temperature, and then the mixture was sealed in a Parr autolave and kept at 100°C for 3 days and then cooled to room temperature at a rate of 5 °C min<sup>-1</sup>. Yellow block crystals of **1** were obtained in 47% yield (based on H<sub>3</sub>L). Anal. Calcd for  $C_{88}H_{72}Cd_5N_6O_{28}$  (2223.52): C, 47.36; H, 3.25; N, 3.77%. Found: C, 47.06; H, 3.49; N, 3.92%. IR (cm<sup>-1</sup>): 3446 (s), 1590 (s), 1527 (m), 1391 (s), 1318 (m), 1264 (m), 1173 (w), 1104(w), 862 (w), 791 (m), 710 (w), 682 (w).

#### 1.4. X-ray structure determinations

Diffraction intensities of all compounds were collected on a Rigaku SCX mini CCD diffractometer using graphite-mono-chromatized MoK $\alpha$  radiation ( $\lambda = 0.71073$  Å) at room temperature. The data integration and reduction were processed with SAINT software. Absorption correction based on multi-scan was performed using the SADABS program.<sup>[S5]</sup> The structures were solved by the direct method using SHELXTL and refined by a full-matrix least-squares method on  $F^2$  with the SHELXL-97 program.<sup>[S6]</sup> All non-hydrogen atoms were refined anisotropically. A summary of the crystallographic data and data collection, refinement parameters are listed in Table S1.



Fig. S1 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of triacetyltriphenylamine.



Fig. S2 <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) spectrum of tricarboxyltriphenylamine (H<sub>3</sub>L).



Fig. S3 <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) spectrum of tricarboxyltriphenylamine (H<sub>3</sub>L).



**Fig. S4** 3D framework of **1** (a) assembled *via* 2D wave-like double sheet structures (b), which were generated by two kinds of  $L^{3-}$  ligands (bule and pink balls) bridging pentanuclear Cd(II) cluster nodes (green balls). All H atoms, counter ions and solvent molecules are omitted for clarity.



**Fig. S5** View of the 3D framework of **1** shown in Ball-Stick mode (a) and Spacefill mode (b) along the *a*-axis. All H atoms, counter ions and solvent molecules are omitted for clarity.



**Fig. S6** View of the 3D framework of **1** shown in Ball-Stick mode (a) and Spacefill mode (b) along the *b*-axis. All H atoms, counter ions and solvent molecules are omitted for clarity.



**Fig. S7** View of the 3D framework of 1 shown in Ball-Stick mode (a) and Spacefill mode (b) along the *c*-axis. All H atoms, counter ions and solvent molecules are omitted for clarity.



Fig. S8 Powder XRD patterns of (a) 1, 1', 1. DMA and 1. CH<sub>3</sub>OH; (b) 2 and its simulated one.



Fig. S9 The corresponding Gram–Schmidt signal of 1 · CH<sub>3</sub>OH and 1 · DMA.



Fig. S10 Gas phase IR spectra corresponding to the maximum of the Gram–Schmidt signal in Fig. 9 of (a)  $1 \cdot CH_3OH$  and (b)  $1 \cdot DMA$  as well as reference spectra of (c) methanol and (d) N-dimethylacetamide.



Fig. S11 TG curves for 1, 1 · CH<sub>3</sub>OH and 1 · DMA under a nitrogen atmosphere.



Fig. S12 (a) Variation of heat-flow as a function of time, 1-CH<sub>2</sub>Cl<sub>2</sub>, 1-CHCl<sub>3</sub>, 1-CCl<sub>4</sub>, 1-benzene, and 1-cyclohexane, (b)  $1 \cdot CH_3OH$  and  $1 \cdot DMA$ .



**Fig. S13** Changes in color of addition of various metal ions  $(1 \times 10^{-4} \text{ mol } \text{L}^{-1}, 10 \text{ mL})$  to the crystals of **1**.



Fig. S14 (a) Coordination environments of the Cd(II) and Cu(II) ions in 2. Symmetry code: A, x+1, -y, -z+2; (b) Two different types of coordination modes of L<sup>3-</sup> ligand in 2. Symmetry code: A, x, y, z+1; B, -x+1, y-1/2, -z+5/2; C, -x+1, y+1/2, -z+3/2; D, x+1, y, z; (c) View of the 3D framework of 2 shown in Ball-Stick mode along the c-axis. All H atoms, counter ions and solvent molecules are omitted for clarity.

(a)



**Fig. S15** (a) Variation of heat-flow as a function of time,  $c(Cu^{2+}) = 1 \times 10^{-5} \text{ mol } L^{-1}$ , (b)  $c(Cu^{2+}) = 1 \times 10^{-6} \text{ mol } L^{-1}$ .



Fig. S16 Change in absorption intensity of 1  $(1 \times 10^{-5} \text{ M})$  in DMSO upon addition of various metal ions (10 mM).



Fig. S17 Emission spectra of 1 in DMSO with  $Cu(NO_3)_2$  at different concentrations.

| Compound                                | 1                             | 2                                     | $1 \cdot CH_3OH$            | 1 · DMA                       |
|-----------------------------------------|-------------------------------|---------------------------------------|-----------------------------|-------------------------------|
| Empirical formula                       | $C_{88}H_{72}Cd_5N_6O_{28}\\$ | $C_{88}H_{72}Cd_{3}Cu_{2}N_{6}O_{27}$ | $C_{90}H_{76}Cd_5N_6O_{28}$ | $C_{96}H_{86}Cd_5N_8O_{28}\\$ |
| Formula weight                          | 2223.52                       | 2109.80                               | 2251.57                     | 2361.73                       |
| Crystal system                          | Monoclinic                    | Monoclinic                            | Monoclinic                  | Monoclinic                    |
| Space group                             | $P2_{1}/c$                    | $P2_{1}/c$                            | $P2_{1}/c$                  | $P2_{1}/c$                    |
| a/Å                                     | 14.6261(6)                    | 14.3997(19)                           | 14.5830(13)                 | 14.5196(9)                    |
| <i>b</i> /Å                             | 23.2526(9)                    | 23.362(3)                             | 23.241(2)                   | 23.3670(14)                   |
| c/Å                                     | 15.7357(7)                    | 15.543(3)                             | 15.6338(14)                 | 15.6042(9)                    |
| $\alpha/^{o}$                           | 90                            | 90                                    | 90                          | 90                            |
| β/°                                     | 107.099(2)                    | 106.309(9)                            | 106.990(2)                  | 107.4750(10)                  |
| γ/°                                     | 90                            | 90                                    | 90                          | 90                            |
| <i>V</i> /Å <sup>3</sup>                | 5115.1(4)                     | 5018.2(12)                            | 5067.4(8)                   | 5049.8(5)                     |
| Ζ                                       | 2                             | 2                                     | 2                           | 2                             |
| $D_c/(g \cdot cm^{-3})$                 | 1.444                         | 1.396                                 | 1.476                       | 1.553                         |
| <i>T</i> (K)                            | 296(2)                        | 296(2)                                | 296(2)                      | 296(2)                        |
| F(000)                                  | 2212                          | 2120                                  | 2244                        | 2364                          |
| Absorption coefficient/mm <sup>-1</sup> | 1.094                         | 1.114                                 | 1.106                       | 1.114                         |
| Reflections collected/unique            | 27989 / 8921                  | 28070 / 8802                          | 19614 / 8639                | 24914 / 8877                  |
| <i>R</i> (int)                          | 0.0320                        | 0.1227                                | 0.0463                      | 0.0407                        |
| Goodness-of-fit on $F^2$                | 1.074                         | 1.077                                 | 1.071                       | 1.076                         |
| $R_1^a [I \ge 2\sigma(I)]$              | 0.0487                        | 0.1094                                | 0.0563                      | 0.0456                        |
| $wR_2^b$ (all data)                     | 0.1717                        | 0.3219                                | 0.1818                      | 0.1593                        |
| CCDC number                             | 1417833                       | 1417835                               | 1424110                     | 1417834                       |

Table S1 Crystal data and refinement parameters for compounds 1, 2,  $1 \cdot CH_3OH$  and  $1 \cdot DMA$ .

<sup>[a]</sup>  $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|$ 

<sup>[b]</sup> wR<sub>2</sub> =  $[\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2]^{1/2}$ 

#### References

- [S1] J. Wang, C. He, P. Y. Wu, J. Wang, C. Y. Duan, J. Am. Chem. Soc. 2011,133, 12402–12405.
- [S2] M. Ji, M.Y. Liu, S.L. Gao, Instrum. Sci. Technol. 2001, 29, 53-57.
- [S3] V. K.J. Marthada, Res. NBS Standards 1980, 85, 467-470.
- [S4] S.L.Gao, Y. Fang, S.P. Chen, Acta Chim. Sin. 2002, 60, 2220-2224.
- [S5] Sheldrick, G. M. SADABS, Program for Empirical Absorption Correction; University of Göttingen, Göttingen, Germany, 1996.

[S6] Sheldrick, G. M.SHELXTL; Bruker Analytical X-ray Instruments Inc., Madison, WI, 1998