Supporting Information

Transfer Hydrogenation of Nitroarenes with Hydrazine at

Near-Room Temperature Catalysed by a MoO₂ Catalyst

Chaofeng Zhang,^{a, b} Jianmin Lu,^a Mingrun Li,^a Yehong Wang,^a Zhe Zhang,^{a, b} Haijun Chen,^{a, b} and Feng Wang^a*

^a State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

^b Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

*Corresponding author. E-mail: wangfeng@dicp.ac.cn

Contents

1. The TEM images and XRD pattern of the MoO ₂	3
2. Filtration experiment and solvent optimization	4
3. The reusability and regeneration of the MoO ₂	5
4. The gas composition analysis by mass spectrometer	7
5. The possible routes for the active hydrogen species generation	8
6. The MoO ₂ (011) surface model······	10
7. The adsorption geometries for each species on the MoO ₂ (011) surface	…11
8. References	··12

1. The TEM images and XRD pattern of the MoO₂

Figure S1. The TEM images of MoO₂.

Figure S2. The XRD pattern of MoO₂.

2. Filtration experiment and solvent optimization

Figure S3. The reduction of nitrobenzene with hydrazine hydrate. Reaction conditions: nitrobenzene 0.5 mmol, hydrazine hydrate 1.5 mmol, ethanol 2.0 mL, MoO₂ 20 mg, 50 μ L p-xylene, 30 °C.

Entry	Solvent	Conv. Select. (%)				
		(%)	Aniline	Nitroso	Azoxy	Azo
1	Ethanol	>99	>99	0	0	0
2	THF	31.2	64.3	28.9	4.3	2.5
3	DMF	>99	69.4	17.4	8.4	4.8
4	DMSO	88.7	73.6	3.1	16.2	7.1
5	Toluene	23.7	96.6	3.4	0	0
6	H ₂ O	17.6	>99	0	0	0
7	CH₃CN	51.5	87.9	12.1	0	0
8	Acetone	0	0	0	0	0
9	Ethyl acetate	18.1	77.8	22.2	0	0
Reaction conditions: nitrobenzene 0.5 mmol, solvent 2.0 mL,						
hydrazine hydrate 1.5 mmol, catalyst (MoO ₂) 20 mg, 30 °C, 0.5 h.						

Table S1: The influence of solvent on the reduction of nitrobenzene by N₂H₄

3. The reusability and regeneration of the MoO₂

Figure S4. Reusability of the MoO_2 in the nitrobenzene reduction (The left bar stands for the conversion and the right one stands for the aniline selectivity).

Figure S5. The XRD patterns of the MoO₂ nanoparticles before and after using.

Figure S6. The TPD pattern of MoO_2^{3nd} . Reaction condition: MoO_2^{3nd} 100 mg, Ar (30 mL·min⁻¹), 20~640 °C(10 °C·min⁻¹).

Figure S7. The gas analysis of nitrobenzene reduction with hydrazine (A) and hydrazine decomposition (B) using MoO₂ as catalyst by MS. Reaction condition: MoO₂ 50 mg, N_2H_4 1.5 mmol, ethanol 5 mL, 30 °C, Ar as the carrier gas and the "S" stands for the injection of the N_2H_4 . A) Nitrobenzene 0.5 mmol; B) no nitrobenzene.

5. The possible routes for the active hydrogen species generation

Table S2. The possible routes for the active hydrogen species generation from the

Route 1A (6 Steps)	Route 1B (6 Steps)
$N_2H_{4(g)} \rightarrow N_2H_4$	$N_2H_{4(g)} \rightarrow N_2H_4$
$N_2H_4 \rightarrow N_2H_3 + H$	$N_2H_4 \rightarrow N_2H_3 + H$
$N_2H_3 + H \rightarrow HN = NH + 2H$	$N_2H_3 + H \rightarrow N=NH_2 + 2H$
$HN=NH + 2H \rightarrow N=NH + 3H$	$N=NH_2 + 2H \rightarrow N=NH + 3H$
$N=NH + 3H \rightarrow N=N + 4H$	$N=NH + 3H \rightarrow N\equiv N + 4H$
$N\equiv N + 4H \rightarrow N\equiv N_{(g)} + 4H$	$N\equiv N + 4H \rightarrow N\equiv N_{(g)} + 4H$
Route 2A (8 steps)	Route 2B (8 steps)
$N_2H_{4(g)} \rightarrow N_2H_4$	$N_2H_{4(g)} \rightarrow N_2H_4$
$N_2H_4 \rightarrow 2NH_2$	$N_2H_4 \rightarrow 2NH_2$
$2NH_2 \rightarrow NH_2 + NH + H$	$2NH_2 \rightarrow NH_2 + NH + H$
$NH_2 + NH + H \rightarrow NH_2 + N + 2H$	$NH_2 + NH + H \rightarrow 2NH + 2H$
$NH_2 + N + 2H \rightarrow NH + N+ 3H$	$2NH + 2H \rightarrow NH + N+ 3H$
$NH + N+ 3H \rightarrow 2N + 4H$	$NH + N+ 3H \rightarrow 2N + 4H$
$2N + 4H \rightarrow N \equiv N + 4H$	$2N + 4H \rightarrow N \equiv N + 4H$
$N\equiv N + 4H \rightarrow N\equiv N_{(g)} + 4H$	$N\equiv N + 4H \rightarrow N\equiv N_{(g)} + 4H$
Cross route 1 (8 steps)	Cross route 2 (8 steps)
$N_2H_{4(g)} \rightarrow N_2H_4$	$N_2H_{4(g)} \rightarrow N_2H_4$
$N_2H_4 \rightarrow N_2H_3 + H$	$N_2H_4 \rightarrow N_2H_3 + H$
$N_2H_3 + H \rightarrow NH_2 + NH + H$	$N_2H_3 + H \rightarrow NH_2 + NH + H$
$NH_2 + NH + H \rightarrow NH_2 + N + 2H$	$NH_2 + NH + H \rightarrow 2NH + 2H$
$NH_2 + N + 2H \rightarrow NH + N+ 3H$	$2NH + 2H \rightarrow NH + N+ 3H$
$NH + N+ 3H \rightarrow 2N + 4H$	$NH + N+ 3H \rightarrow 2N + 4H$
$2N + 4H \rightarrow N \equiv N + 4H$	$2N + 4H \rightarrow N \equiv N + 4H$
$N\equiv N + 4H \rightarrow N\equiv N_{(g)} + 4H$	$N\equiv N + 4H \rightarrow N\equiv N_{(g)} + 4H$
Cross route 3 (8 steps)	Cross route 4 (8 steps)
$N_2H_{4(g)} \rightarrow N_2H_4$	$N_2H_{4(g)} \rightarrow N_2H_4$
$N_2H_4 \rightarrow N_2H_3 + H$	$N_2H_4 \rightarrow N_2H_3 + H$
$N_2H_3 + H \rightarrow N=NH_2 + 2H$	$N_2H_3 + H \rightarrow HN = NH + 2H$
$N=NH_2 + 2H \rightarrow NH_2 + N + 2H$	$HN=NH + 2H \rightarrow 2NH + 2H$
$NH_2 + N + 2H \rightarrow NH + N+ 3H$	$2NH + 2H \rightarrow NH + N+ 3H$
$NH + N+ 3H \rightarrow 2N + 4H$	$NH + N+ 3H \rightarrow 2N + 4H$
$2N + 4H \rightarrow N \equiv N + 4H$	$2N + 4H \rightarrow N \equiv N + 4H$
$N\equiv N + 4H \rightarrow N\equiv N_{(g)} + 4H$	$N\equiv N + 4H \rightarrow N\equiv N_{(g)} + 4H$
Cross route 5 (8 steps)	Cross route 6 (8 steps)
$N_2H_{4(g)} \rightarrow N_2H_4$	$N_2H_{4(g)} \rightarrow N_2H_4$
$N_2H_4 \rightarrow N_2H_3 + H$	$N_2H_4 \rightarrow N_2H_3 + H$
$N_2H_3 + H \rightarrow N=NH_2 + 2H$	$N_2H_3 + H \rightarrow HN = NH + 2H$
$N=NH_2 + 2H \rightarrow N=NH + 3H$	$HN=NH + 2H \rightarrow N=NH + 3H$

hydrazine decomposition ^a

$N=NH + 3H \rightarrow NH + N+ 3H$	$N=NH + 3H \rightarrow NH + N+ 3H$
$NH + N+ 3H \rightarrow 2N + 4H$	$NH + N+ 3H \rightarrow 2N + 4H$
$2N + 4H \rightarrow N \equiv N + 4H$	$2N + 4H \rightarrow N \equiv N + 4H$
$N\equiv N + 4H \rightarrow N\equiv N_{(g)} + 4H$	$N\equiv N + 4H \rightarrow N\equiv N_{(g)} + 4H$
Cross route 5 (8 steps)	Cross route 6 (8 steps)
$N_2H_{4(g)} \rightarrow N_2H_4$	$N_2H_{4(g)} \rightarrow N_2H_4$
$N_2H_4 \rightarrow 2NH_2$	$N_2H_4 \rightarrow 2NH_2$
$2NH_2 \rightarrow NH_2 + NH + H$	$2NH_2 \rightarrow NH_2 + NH + H$
$NH_2 + NH + H \rightarrow N_2H_3 + H$	$NH_2 + NH + H \rightarrow N_2H_3 + H$
$N_2H_3 + H \rightarrow HN=NH + 2H$	$N_2H_3 + H \rightarrow N=NH_2 + 2H$
$HN=NH + 2H \rightarrow N=NH + 3H$	$N=NH_2 + 2H \rightarrow N=NH + 3H$
$N=NH + 3H \rightarrow N\equiv N + 4H$	$N=NH + 3H \rightarrow N\equiv N + 4H$
$N\equiv N + 4H \rightarrow N\equiv N_{(g)} + 4H$	$N\equiv N + 4H \rightarrow N\equiv N_{(g)} + 4H$
Cross route 7 (8 steps)	Cross route 8 (8 steps)
$N_2H_{4(g)} \rightarrow N_2H_4$	$N_2H_{4(g)} \rightarrow N_2H_4$
$N_2H_4 \rightarrow 2NH_2$	$N_2H_4 \rightarrow 2NH_2$
$2NH_2 \rightarrow NH_2 + NH + H$	$2NH_2 \rightarrow NH_2 + NH + H$
$NH_2 + NH + H \rightarrow NH_2 + N + 2H$	$NH_2 + NH + H \rightarrow 2NH + 2H$
$NH_2 + N + 2H \rightarrow N=NH_2 + 2H$	$2NH + 2H \rightarrow HN=NH + 2H$
$N=NH_2 + 2H \rightarrow N=NH + 3H$	$HN=NH + 2H \rightarrow N=NH + 3H$
$N=NH + 3H \rightarrow N=N + 4H$	$N=NH + 3H \rightarrow N=N + 4H$
$N\equiv N + 4H \rightarrow N\equiv N_{(g)} + 4H$	$N\equiv N + 4H \rightarrow N\equiv N_{(g)} + 4H$
Cross route 9 (8 steps)	Cross route 10 (8 steps)
$N_2H_{4(g)} \rightarrow N_2H_4$	$N_2H_{4(g)} \rightarrow N_2H_4$
$N_2H_4 \rightarrow 2NH_2$	$N_2H_4 \rightarrow 2NH_2$
$2NH_2 \rightarrow NH_2 + NH + H$	$2NH_2 \rightarrow NH_2 + NH + H$
$NH_2 + NH + H \rightarrow NH_2 + N + 2H$	$NH_2 + NH + H \rightarrow 2NH + 2H$
$NH_2 + N + 2H \rightarrow NH + N+ 3H$	$2NH + 2H \rightarrow NH + N+ 3H$
$NH + N+ 3H \rightarrow N=NH + 3H$	$NH + N+ 3H \rightarrow N=NH + 3H$
$N=NH + 3H \rightarrow N\equiv N + 4H$	$N=NH + 3H \rightarrow N=N + 4H$
$N\equiv N + 4H \rightarrow N\equiv N_{(g)} + 4H$	$N \equiv N + 4H \rightarrow N \equiv N_{(g)} + 4H$

^a For each intermediate, without special footnote, they are adsorbed specieses on the

 MoO_2 surface.

6. The MoO₂(011) surface model

MoO₂ (011) Surface

Figure S8. Structure of three ideal terminations of the MoO₂ (011) surface. (a) O-O'-MoO zone; (b) O'-MoO-O zone; (c) MoO-O'-O zone.¹ Different types of surface active centers are indicated: Mo(6), Mo(5) and Mo(5) stand for the six-, five- or four-fold coordinated molybdenum, respectively; O(3), O(2) and O(1)stand for the three, two and one-fold coordinated oxygen atoms, respectively.

7. The adsorption geometries for each species on the $MoO_2(011)$ surface

NHN

 N_2

NH₂N

K1

Figure S9. The adsorption geometries for each species on the MoO_2 (011) surface contained in the hydrazine decomposition.

8. References

1 R. Tokarz-Sobieraj; R. Grybos; M. Witko. *Appl. Catal., A*, 2011, **391**, 137-143.