An efficient and recyclable thiourea supported copper(I) chloride catalyst for the azide–alkyne cycloaddition reactions[†]

Milan Kr. Barman, Ashish Kumar Sinha and Sharanappa Nembenna*

National Institute of Science Education and Research (NISER), Bhubaneswar, 751005 INDIA Email:snembenna@niser.ac.in

1-benzyl-4-phenyl-1H-1,2,3-triazole(4a)

¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.7 Hz, 2H), 7.66 (s, 1H), 7.44 – 7.35 (m, 5H), 7.35 – 7.28 (m, 3H), 5.58 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 148.3, 134.8, 130.6, 129.2, 128.9, 128.9, 128.2, 128.1, 125.8, 119.6, 54.3.

1-benzyl-4-(p-tolyl)-1H-1,2,3-triazole(4b)

1-benzyl-4-(m-tolyl)-1H-1,2,3-triazole(4c)

¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 4.4 Hz, 2H), 7.57 (d, J = 7.7 Hz, 1H), 7.38 (t, J = 6.1 Hz, 3H), 7.30 (dd, J = 9.5, 4.6 Hz, 3H), 7.13 (d, J = 7.6 Hz, 1H), 5.57 (s, 2H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 138.7, 134.9, 130.6, 129.3, 129.1,128.9, 128.9, 128.2, 126.5, 123.01,

119.6, 54.4, 21.6.

1-benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole(4d)

¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.8 Hz, 2H), 7.57 (s, 1H), 7.38 (d, *J* = 7.1 Hz, 3H), 7.31 (d, *J* = 2.2 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 5.56 (s, 2H), 3.82 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.7, 148.2, 134.9, 129.2, 128.8, 128.1, 127.1, 123.4, 118.8, 114.3, 55.4, 54.3.

1-benzyl-4-(4-fluorophenyl)-1H-1,2,3-triazole(4e)

¹H NMR (400 MHz, CDCl₃) δ 7.78-7.75 (m, 2H), 7.61 (s, 1H), 7.40-7.37 (m, 3H), 7.32-7.26(m, 2H), 7.09 (t, *J* = 8.7 Hz, 2H), 5.57 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.8(d, *J* = 245Hz), 147.6, 134.8, 129.4, 129.0, 128.3, 127.6(d, *J* = 8Hz), 126.9(d, *J* = 3Hz), 119.4, 116(d, *J* = 22Hz), 54.5 ppm.

1-benzyl-4-(4-bromophenyl)-1H-1,2,3-triazole(4f)

¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.65 (m, 3H), 7.53 – 7.50 (m, 2H), 7.39 (d, *J* = 7.0 Hz, 3H), 7.33 – 7.30 (m, 2H), 5.56 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 147.3, 134.6, 132.1, 129.7, 129.4, 129.0, 128.3, 127.4, 122.2, 119.7, 54.5

2-(1-benzyl-1H-1,2,3-triazol-4-yl)pyridine(4g)

¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.97 (d, *J* = 3.8 Hz, 1H), 7.74 – 7.50 (m, 1H), 7.26 (s, 1H), 6.8-6.7 (m, 4H), 6.77 – 6.73 (m, 2H), 5.02 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 148.7, 146.6, 144.9, 134.4, 133.3, 9.2, 126.0, 122.0, 120.2, 54.4

129.2, 129.0, 128.2, 126.9, 123.9, 120.2, 54.4.

1-benzyl-4-cyclopentyl-1H-1,2,3-triazole(4h)

¹H NMR (400 MHz, CDCl₃) δ 7.42 (s, 1H), 7.41 (s, 2H), 7.36 – 7.27 (m, 3H), 5.54 (s, 2H), 3.21 (s, 1H), 2.14 (s, 2H), 1.78 (d, *J* = 8.8 Hz, 2H), 1.70 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 153.5, 135.0, 129.0, 128.6, 128.0, 119.6, 77.4, 0.26 8, 22.25 2

77.1, 76.8, 54.0, 36.8, 33.2, 25.2.

1-benzyl-4-cyclopropyl-1H-1,2,3-triazole(4i)

¹H NMR (400 MHz, CDCl₃) δ 7.39 (s, 1H), 7.37 (s, 2H), 7.27 (d, J = 9.4 Hz, 3H), 5.48 (s, 2H), 1.95 (s, 1H), 0.95 (d, J = 5.0 Hz, 2H), 0.85 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 135.0, 129.1, 128.9, 128.7, 128.3, 128.1, 54.2, 7.8, 6.8. HRMS calcd for C₁₂H₁₃N₃ [M + H]⁺ 200.1193, found

200.1182.

methyl 1-benzyl-1H-1,2,3-triazole-4-carboxylate (4j)

¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.37 (dd, J = 5.1, 1.8 Hz, 3H), 7.28 (d, J = 3.2 Hz, 1H), 5.56 (s, 2H), 3.89 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.1, 133.7, 129.3, 129.2, 128.3, 127.5, 54.5, 52.2.

ethyl 1-benzyl-1H-1,2,3-triazole-4-carboxylate (4k)

¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.34 (dd, *J* = 5.0, 1.9 Hz, 3H), 7.25 – 7.24 (m, 1H), 4.34 (q, *J* = 7.3 Hz, 2H), 1.37 – 1.30 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.7, 140.6, 133.8, 129.3, 129.1, 128.2, 127.4, 61.3, 54.4, 14.3.

dimethyl 1-benzyl-1H-1,2,3-triazole-4,5-dicarboxylate(8a)

¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.28 (m, 3H), 7.26 – 7.21 (m, 2H), 5.78 (s, 2H), 3.93 (s, 3H), 3.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.5, 158.8, 140.2, 133.9, 129.8, 129.0, 128.9, 128.0, 54.0, 53.4, 52.7.

1-(3-chlorobenzyl)-4-phenyl-1H-1,2,3-triazole(4l)

1-(3-chlorobenzyl)-4-(m-tolyl)-1H-1,2,3-triazole(4m)

¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 9.0 Hz, 2H), 7.52 (d, J = 7.4 Hz, 1H), 7.22 (dd, J

 $= 12.4, 5.4 \text{ Hz}, 3\text{H}), 7.14 - 7.04 \text{ (m, 2H)}, 5.47 \text{ (s, 2H)}, 2.32 \text{ (s, 3H)}; {}^{13}\text{C}$ NMR (100 MHz, CDCl₃) δ 148.7, 138.6, 136.7, 135.1, 130.5, 130.3, 129.2, 129.1, 128.8, 128.1, 126.5, 126.1, 122.9, 119.6, 53.6, 21.5. HRMS calcd for C₁₆H₁₄ClN₃ [M + H]⁺ 284.0935, found 284.0949.

1-(3-chlorobenzyl)-4-(4-fluorophenyl)-1H-1,2,3-triazole(4n)

¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.74 (m, 2H), 7.66 (s, 1H), 7.36 – 7.27 (m, 3H), 7.19-7.16 (m, 1H), 7.13 – 7.05 (m, 2H), 5.53 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.8(d, J = 246Hz), 147.6, 136.6, 135.1, 130.6, 129.1, 128.2, 127.6(d, J = 8Hz), 126.7(d, J = 3Hz), 126.2, 119.4, 115.9(d, J = 22Hz), 53.6 ppm. HRMS calcd for C₁₅H₁₁ClFN₃ [M + H]⁺ 288.0699, found 288.0698.

4-(4-bromophenyl)-1-(3-chlorobenzyl)-1H-1,2,3-triazole(40)

¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.64 (m, 3H), 7.53 (d, J = 8.4 Hz, 2H), 7.36 – 7.28 (m, 3H), 7.18 (d, J = 6.8 Hz, 1H), 5.54 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 136.5, 135.2, 132.1, 130.6, 129.35 (d, J = 18.6 Hz), 128.2, 127.3, 126.2, 122.3, 119.7, 53.7; HRMS calcd for Hl⁺ 347 9842 found 347 9898

 $C_{14}H_{11}ClN_4 \ [M+H]^+ \ \ 347.9842, \ found \ \ 347.9898.$

2-(1-(3-chlorobenzyl)-1H-1,2,3-triazol-4-yl)pyridine(4p)

¹H NMR (400 MHz, CDCl₃) δ 8.96 (s, 1H), 8.56 (d, *J* = 3.9 Hz, 1H), 8.21 (d, *J* = 7.9 Hz, 1H), 7.80 (s, 1H), 7.39 – 7.28 (m, 4H), 7.19 (d, *J* = 6.6 Hz,

1H), 5.57 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 149.2, 146.9, 145.4, 136.4, 135.2, 133.3, 130.6, 129.3, 128.2, 126.7, 126.2, 124.0, 120.0, 53.8; HRMS calcd for C₁₄H₁₁ClN₄ [M + H]⁺ 271.0756, found 271.0745.

CI N-N CO₂Me

methyl 1-(3-chlorobenzyl)-1H-1,2,3-triazole-4-carboxylate(4q)

¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.37 – 7.29 (m, 2H), 7.26 (d, *J* = 3.4 Hz, 1H), 7.16 (d, *J* = 7.1 Hz, 1H), 5.55 (s, 2H), 3.92 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.1, 135.7, 135.3, 130.7, 129.5, 128.4,

127.6, 126.3, 53.8, 52.3. HRMS calcd for $C_{11}H_{10}ClN_3O_2$ [M + H]⁺ 252.0539, found 252.0534.

ethyl 1-(3-chlorobenzyl)-1H-1,2,3-triazole-4-carboxylate(4r)

^{Et} ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.34 – 7.07 (m, 5H), 5.55 (s, 2H), 4.38 (dd, J = 14.3, 7.1 Hz, 2H), 1.37 (dd, J = 9.6, 4.6 Hz, 3H); ¹³C

NMR (101 MHz, CDCl₃) δ 160.6, 135.8, 135.2, 130.6, 130.1, 129.4, 128.7, 128.3, 126.3, 61.4, 53.8, 14.3.

dimethyl 1-(3-chlorobenzyl)-1H-1,2,3-triazole-4,5-dicarboxylate(8c)

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.26 (m, 3H), 7.16 (d, *J* = 7.3 Hz, 1H), 5.79 (s, 2H), 3.97 (s, 3H), 3.92 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 158.7, 140.4, 135.7, 134.8, 130.2, 129.4, 129.1, 128.2, 126.2, 53.4, 53.2, 52.8.

1-(4-nitrobenzyl)-4-phenyl-1H-1,2,3-triazole(4s)

¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 8.7 Hz, 2H), 7.85 – 7.73 (m, 3H), 7.44 (s, 1H), 7.43 – 7.38 (m, 3H), 7.33 (t, *J* = 7.3 Hz, 1H), 5.69 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 148.1, 141.8, 130.2, 129.0, 128.6, 110.9, 53.2

128.6, 125.8, 124.4, 119.9, 53.2.

1-(4-nitrobenzyl)-4-(m-tolyl)-1H-1,2,3-triazole(4t)

¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.2 Hz, 2H), 7.76 (s, 1H), 7.66 (s, 1H), 7.58 (d, *J* = 7.6 Hz, 1H), 7.44 (d, *J* = 8.5 Hz, 2H), 7.30

(t, J = 7.6 Hz, 1H), 7.16 (d, J = 7.5 Hz, 1H), 5.69 (s, 2H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.2, 141.8, 138.8, 129.9, 129.4, 128.9, 128.7, 126.6, 124.4, 123.0, 53.3, 21.5. HRMS calcd for C₁₆H₁₄N₄O₂ [M + H]⁺ 295.1178, found 295.1190.

4-(4-fluorophenyl)-1-(4-nitrobenzyl)-1H-1,2,3-triazole(4u)

¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.7 Hz, 2H), 7.82 – 7.75 (m, 2H), 7.71 (s, 1H), 7.44 (d, *J* = 8.7 Hz, 2H), 7.10 (t, *J* = 8.7 Hz, 2H), 5.69 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.9(d, *J* = 246Hz), 148.2, 148.0, 141.7, 128.7, 127.65 (d, *J* = 8 Hz), 126.46 (d, *J* = 3 Hz),

124.5, 119.5, 116.0(d, J = 22Hz), 53.3. HRMS calcd for $C_{15}H_{11}FN_4O_2 [M + H]^+$ 299.0924, found 299.0939.

4-(4-bromophenyl)-1-(4-nitrobenzyl)-1H-1,2,3-triazole(4v)

¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.7 Hz, 2H), 7.77 (s, 1H), 7.69 (d, J = 8.3 Hz, 2H), 7.54 (d, J = 8.2 Hz, 2H), 7.45 (d, J = 8.6 Hz, 2H), 5.69 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 148.3, 141.6, 132.2, 129.2, 128.7, 127.3, 124.5, 122.5, 53.4. HRMS calcd for C₁₅H₁₁BrN₄O₂ [M + H]⁺ 359.0091, found 359.0138

2-(1-(4-nitrobenzyl)-1H-1,2,3-triazol-4-yl)pyridine(4w)

¹H NMR (400 MHz, CDCl₃) δ 8.97 (s, 1H), 8.58 (s, 1H), 8.24 (d, *J* = 8.6 Hz, 2H), 8.20 (d, *J* = 7.9 Hz, 1H), 7.86 (s, 1H), 7.46 (d, *J* = 8.5 Hz, 2H), 7.37 (dd, *J* = 7.4, 4.9 Hz, 1H), 5.72 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 149.6, 148.3, 147.1, 145.8, 141.5, 133.3, 128.8, 124.6, 124.0, 120.2, 53.5. HRMS calcd for C₁₄H₁₁N₅O₂ [M + H]⁺ 282.0988, found 282.0986.

ethyl 1-(4-nitrobenzyl)-1H-1,2,3-triazole-4-carboxylate(4x)

¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.7 Hz, 2H), 8.10 (s, 1H), 7.44 (d, J = 8.7 Hz, 2H), 5.71 (s, 2H), 4.40 (q, J = 7.1 Hz, 2H), 1.38 (t,

J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.4, 148.2, 140.7, 128.8, 127.6, 124.4, 124.0, 61.5, 53.3, 14.2.

1-benzyl-4-hexyl-1H-1,2,3-triazole(4y)

¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 1H), 7.37 (t, *J* = 6 Hz, 2H), 7.28 (t, *J* = 4Hz, 2H), 5.51 (s, 2H), 2.70 (bs, 2H), 1.67 (bs, 2H), 1.36 – 1.26

(m, 6H), 0.89 (t, J = 6.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 135.0, 129.1, 128.9, 128.7, 128.1, 125.8, 54.2, 31.5, 29.8, 29.1, 25.8, 22.5, 14.1 ppm.

dimethyl 1-(4-nitrobenzyl)-1H-1,2,3-triazole-4,5-dicarboxylate(8d)

¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.8 Hz, 1H), 7.45 (d, J = 8.8 Hz, 2H), 5.92 (s, 2H), 3.97 (s, 3H), 3.91 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.4, 158.6, 148.2, 140.9, 129.2, 129.0, 124.3, 53.6, 53.1, 53.0.

diethyl 1-(4-nitrobenzyl)-1H-1,2,3-triazole-4,5-dicarboxylate(8e)

¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.8 Hz, 2H), 7.45 (d, J = 8.8 Hz, 2H), 5.92 (s, 2H), 4.43 (q, J = 7.1 Hz, 2H), 4.36 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H), 1.31 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 158.3, 148.2, 141.2, 141.0, 129.3, 129.0, 124.2, 63.2, 62.2, 53.0, S called for C H N O [M + H]⁺ 349 1186 found 349 1143

14.2, 13.9. HRMS calcd for $C_{15}H_{16}N_4O_6 [M + H]^+$ 349.1186, found 349.1143.

1,4-diphenyl-1H-1,2,3-triazole(6a)

¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.92 (d, *J* = 7.3 Hz, 2H), 7.80 (d, *J* = 7.7 Hz, 2H), 7.55 (t, *J* = 7.8 Hz, 2H), 7.50 – 7.43 (m, 3H), 7.38 (d, *J* = 7.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.5, 137.2, 130.3, 129.9,

129.0, 1289, 128.5, 125.9, 120.6, 117.7.

methyl 1-phenyl-1H-1,2,3-triazole-4-carboxylate (6b)

¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 7.76 (d, *J* = 7.9 Hz, 2H), 7.56 (t, *J* = 7.6 Hz, 2H), 7.49 (t, *J* = 7.3 Hz, 1H), 3.99 (s, 3H);). ¹³C NMR (101 MHz, CDCl₃) δ 161.1, 140.7, 136.4, 130.1, 129.7, 125.7, 120.9, 52.5.

ethyl 1-phenyl-1H-1,2,3-triazole-4-carboxylate (6c)

 $\begin{bmatrix} & & & \\ & & & & \\ & & & &$

120.9, 61.6, 14.4.

dimethyl 1-phenyl-1H-1,2,3-triazole-4,5-dicarboxylate(8b)

¹H and ¹³ C NMR spectra of compound **4a**

 ^1H and 13 C NMR spectra of compound 4b

¹H and ¹³ C NMR spectra of compound **4c**

 ^1H and 13 C NMR spectra of compound 4d

¹H and ¹³ C NMR spectra of compound **4e**

¹H and ¹³ C NMR spectra of compound **4f**

 ^1H and 13 C NMR spectra of compound 4g

 ^1H and 13 C NMR spectra of compound 4h

¹H and ¹³ C NMR spectra of compound **4i**

 ^1H and 13 C NMR spectra of compound 4j

 ^1H and 13 C NMR spectra of compound 4k

¹H and ¹³ C NMR spectra of compound 8a

 ^1H and 13 C NMR spectra of compound 4I

 ^1H and 13 C NMR spectra of compound 4m

 ^1H and 13 C NMR spectra of compound 4n

¹H and ¹³ C NMR spectra of compound **4p**

 ^1H and 13 C NMR spectra of compound 4q

 ^1H and 13 C NMR spectra of compound 4r

 ^1H and 13 C NMR spectra of compound 8c

¹H and ¹³ C NMR spectra of compound **4s**

 ^1H and 13 C NMR spectra of compound 4t

 ^1H and 13 C NMR spectra of compound 4u

¹H and ¹³ C NMR spectra of compound **4y**

¹H and ¹³ C NMR spectra of compound **8d**

¹H and ¹³ C NMR spectra of compound 8e

¹H and ¹³ C NMR spectra of compound **6a**

 ^1H and 13 C NMR spectra of compound 6b

 ^1H and 13 C NMR spectra of compound 6c

 ^1H and 13 C NMR spectra of compound 8b

Table S1. Crystal data and structure refinement for sn_2_{131} 0m.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.50° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole

sn_z_131_0m C38 H48 Cl Cu N4 O S2 739.91 100 K 0.71069 Å Triclinic P-1 a = 11.443(2) Å $\alpha = 71.585(10)^{\circ}$. b = 12.452(3) Å $\beta = 84.083(10)^{\circ}$. c = 15.010(3) Å $\gamma = 68.386(10)^{\circ}$. 1886.3(13) Å³ 2 1.303 Mg/m³ 0.795 mm⁻¹ 780 0.068 x 0.045 x 0.033 mm³ 1.84 to 25.50°. -13<=h<=13, -14<=k<=15, -18<=l<=18 26167 7005 [R(int) = 0.0334]99.8 % Empirical 0.7458 and 0.6589 Full-matrix least-squares on F² 7005 / 0 / 432 1.018 R1 = 0.0370, wR2 = 0.0919 R1 = 0.0516, wR2 = 0.10120.405 and -0.289 e.Å-3

Fig. S1 Thermogravimetric analysis for LCu(Cl)L C₃₄H₄₀ClCuN₄S₂ (1).

Fig. S2 PXRD pattern for LCu(Cl)L $C_{34}H_{40}ClCuN_4S_2$ (1).

Fig. S3 Proposed mechanism for compound 1 catalysed cycloaddition of azides and internal alkynes