Supporting information

Using Imidazolium-Based Ionic Liquids as Dual Solvent-Catalysts for Sustainable Synthesis of Vitamin Esters: Inspiration from Bio- and Organo-Catalysis

Yifeng Tao^{a, ‡}, Ruijuan Dong^{a, b, ‡}, Ioannis V. Pavlidis^c, Biqiang Chen^{a,*}, Tianwei Tan^{a,*}

^a National Energy R&D Center for Biorefinery, Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd East, 100029 Beijing, PR China. B. Chen (Tel.: +86-10-64416691; Email: chenbq@mail.buct.edu.cn); T. Tan (Email: twtan@mail.buct.edu.cn)
^b School of Basic Medical Science, Beijing University of Chinese Medicine, No. 11 North 3rd Ring Rd East, 100029 Beijing, PR China.

^c Dept. of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
‡These authors contributed equally.

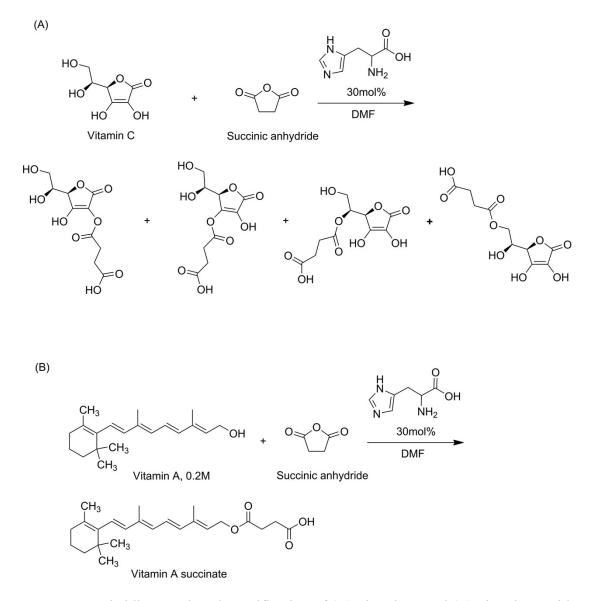
Contents

Table S1 and S2	_2
Table S3	_3
Scheme S1	_4
HRMS spectra of vitamin C and A esters	_5
Fig. S4	_7
HRMS, 1H- and 13C-NMR spectra of vitamin E succinate	_9

Solvents	Yields/%
Hexane	0
tert-Amyl alcohol	0.5
Tert-Butanol	1.6
Acetonitrile	0.8
Dichloromethane	3.2±0.2
DMSO	72.6±1.8
DMF	54.5±0.9

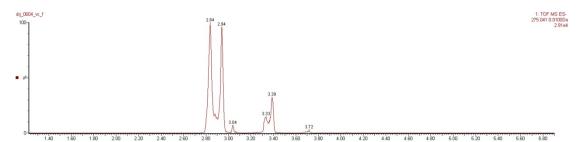
Table S1 Effects of organic solvents on the esterification of vitamin E with succinic anhydride

 using *Candida sp.* Lipase as catalysts


Table S2 Effects of molar ratio among substrates and ionic liquids on the initial rate and yield when using $[C_5C_1Im][NO-3]$ as catalyst for the esterification of vitamin E with succinic anhydride

Entry	Molar Ratio	Initial rate	Yield after
Enuy	(α-tocopherol: Succinic Anhydride: ILs)	(10 ⁻² /min)	1.5 h (%)
S1	0.5: 1: 4	0.70 ± 0.01	96.2 ± 1.2
S2	1.0: 2: 4	1.51 ±0.08	97.2 ± 1.4
S3	1.5: 3: 4	2.22 ± 0.07	96.5 ±1.2
S4	2.0: 4: 4	2.69 ± 0.09	95.2 ±0.8
S 5	4.0: 8: 4	2.86 ± 0.12	76.4 ±2.1
S6	0.5: 0.55: 4	0.42 ± 0.04	76.8 ±2.4
S 7	0.5: 0.75: 4	0.61 ±0.05	89.1 ±2.2
S8	0.5: 1.00: 4	0.69 ± 0.03	96.2 ± 1.8
S9	0.5: 1.50: 4	0.88 ± 0.06	98.9±1.6
S10	0.5: 2.00: 4	1.01 ±0.09	99.5 ±1.3

Vitamins	Vitamin E	Vitamin A	Vitamin C
Acyl donor	HO HO	CH ₃ CH ₃ CH ₃ CH ₃	HO HO HO HO OH
Acetic anhydride	+	+	+
Succinate	_	_	_
Butyric anhydride	+	+	+
Succinic anhydride	+	+	+
Ketoglutarate	_	-	_
Pentyl anhydride	+	+	+
Glutaric anhydride	+	+	+


Table S3 Synthesis of vitamin esters using [C5C1Im][NO- 3] ionic liquid as dual solvent catalysts

Conditions: A standard mixture containing 0.5 mmol vitamin, 1 mmol acyl donor and 4 mM ionic liquids was used and the reactions were carried out at 50 °C for 3 h under dark and nitrogen atmosphere.

Scheme S1 Histidine-catalyzed esterification of (A) vitamin C and (B) vitamin A with succinic anhydride. The products were characterized by LC-MS.

HRMS spectra of vitamin C and A succinate

Fig. S1 LC-MS spectrum of esterification between vitamin C and succinic anhydride. m/z of four peaks (retention time: 2.84 min, 2.94 min, 3.33 min and 3.39 min) were found 277.0559 [M]⁺, indicating four hydroxyl group of vitamin C can be esterified with succinic anhydride.

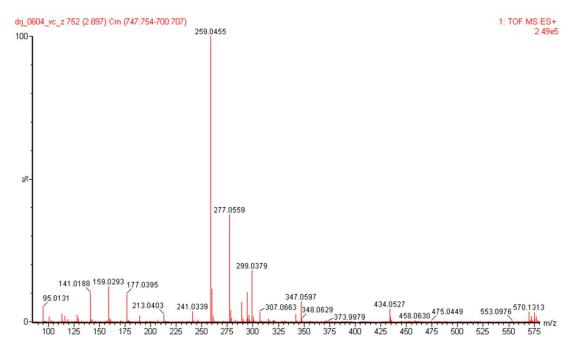
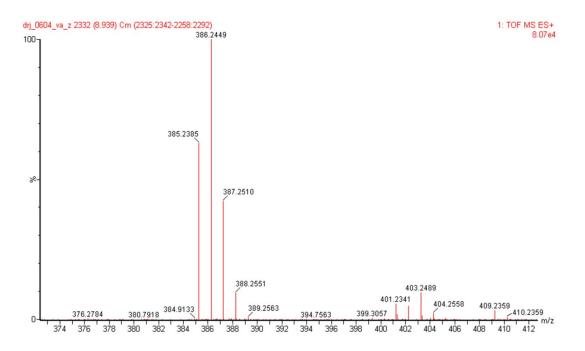
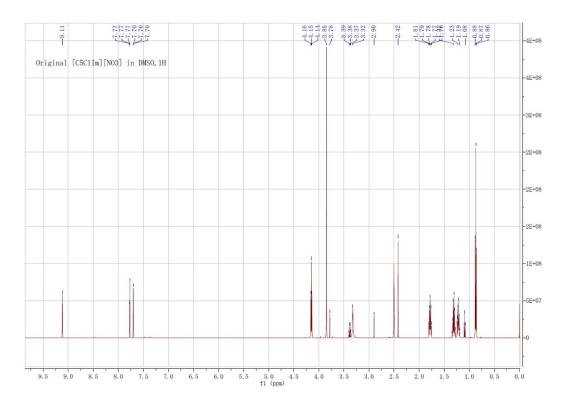
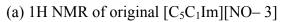
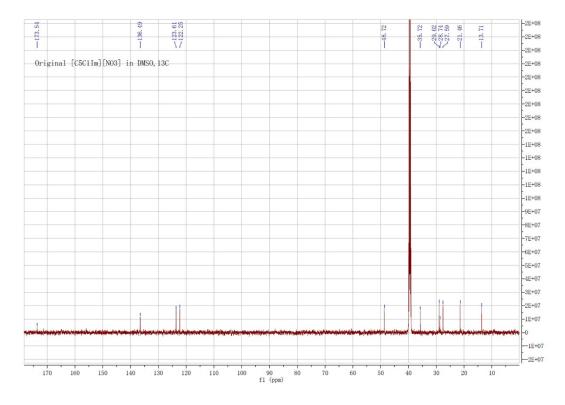
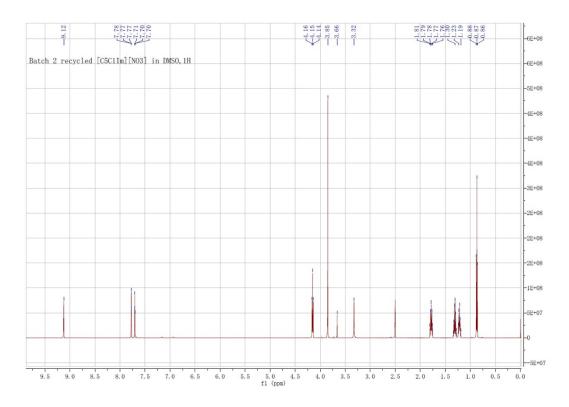
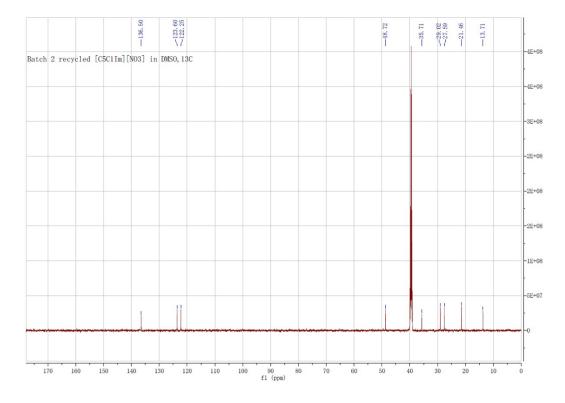


Fig. S2 HRMS spectrum of vitamin C succinate (EI, m/z: found 277.0559 $[M]^+$; calculated 276.05 for C₁₀H₁₂O₉)


Fig. S3 HRMS spectrum of vitamin A succinate (EI, m/z: found 386.2449 $[M]^+$; calculated 386.25 for $C_{24}H_{34}O_4$)



(b) 13C NMR of original [C₅C₁Im][NO-3]

(c) 1H NMR of batch 2 recycled $[C_5C_1Im][NO-3]$

(d) 13C NMR of batch 2 recycled $[C_5C_1Im][NO-3]$

Fig. S4 Structural comparison between the recovered and original $[C_5C_1Im][NO-3]$ ionic liquid by the test of 1H and 13C NMR (600 HZ, in DMSO-*d6*)

HRMS, 1H- and 13C-NMR spectra of vitamin E succinate

Purification of vitamin E succinate: (a) 1 mL of the reaction medium was added to 2 mL diethyl ether and incubated overnight under -18 °C; (b) after centrifugation at 8000 × g for 2 min, the organic phase was removed and added to 1.5 mL deionized water, and then mixed by vortex for 1 min; (c) after centrifugation at 8000 × g for 2 min, the organic phase was carefully transferred into a new tube and then dried with Na₂SO₄; (d) after the removal of solvent in a reduced-pressure rotary evaporator, 400 μ L *n*-hexane were added to dissolve the unreacted VE further purification of the final isolated ester because α -tocopherol succinate is not soluble in *n*-hexane; (e) Centrifuging at 8000 × g for 2 min again, the liquid was discarded and after dried by nitrogen, white powder was obtained for further characterization. The isolated yield was about 80%, and the purity of final product vitamin E succinate was 97%; the melting point of final product was 75.2-76.5 °C.

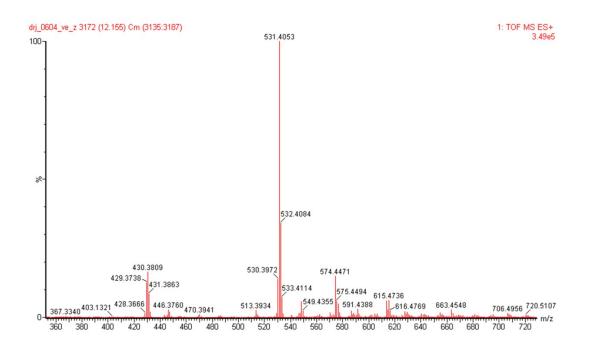


Fig. S5 HRMS spectrum of vitamin E succinate (EI, m/z: found 531.4053 [M]⁺; calculated 530.40 for $C_{33}H_{54}O_5$).

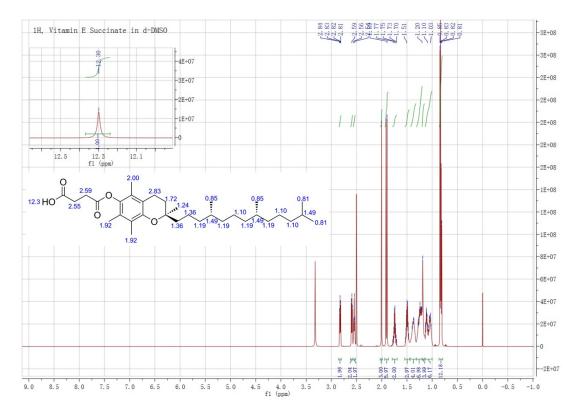


Fig. S6 1H-NMR spectrum of vitamin E succinate (600HZ, d6-DMSO)

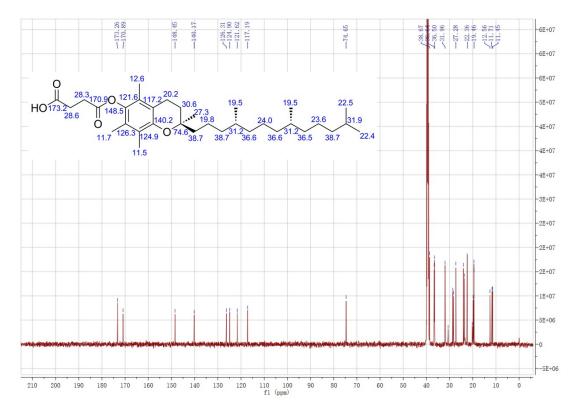


Fig. S7 13C-NMR spectrum of vitamin E succinate (600HZ, d6-DMSO)

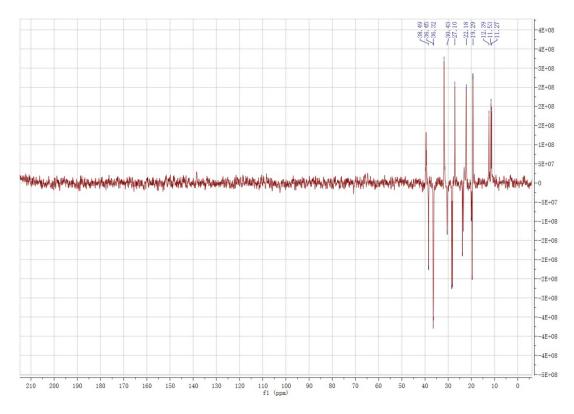


Fig. S8 13C-Dept (0135°)-NMR spectrum of vitamin E succinate (600HZ, d6-DMSO)