Supporting Information For

HOTf-Catalyzed Sustainable One-Pot Synthesis of Benzene and Pyridine Derivatives under Solvent-free Conditions

Xu Zhang,^a Zhiqiang Wang,^a Kun Xu,^a Yuquan Feng,^a Wei Zhao,^a Xuefeng Xu,^a
Yanlei Yan^a and Wei Yi^{b*}

^aSchool of Chemistry and Pharmacony Engineering, Nanyang Normal University, Nanyang 473061, P.R. China

^bVARI/SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China

E-mail: <u>yiwei.simm@simm.ac.cn</u>.

General Methods:

 1 H and 13 C NMR spectra were recorded in CDCl₃ or DMSO- d_{6} solutions on a Bruker AVANCE 400 MHz spectrometer. High resolution mass spectra were obtained on a Waters Micromass GCT facility. HOTf was purchased from Adamasbeta. All other reagents and solvents were used as is from commercial sources. Unless noted below, all other compounds have been reported in the literature or are commercially available.

General procedure for the synthesis of pyridine deritives from ketones 1 and amine 2:

A reaction kettle (10 mL) was charged with ketone (1.0 mmol, 1.0 equiv), amine (0.75 mmol, 1.5 equiv), and the HOTf (0.025 mmol) was added. The mixture was stirred at 120 °C for 12 hours, the mixture was quenched by sat. aq. NaHCO₃, and diluted with 20 mL of dichloromethane and washed with 10 mL of H₂O. The aqueous layer was extracted twice with dichloromethane (10 mL) and the combined organic phase was dried over Na₂SO₄. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/AcOEt = 30: 1) to afford pyridine derivatives. All other compounds are synthesized in a similar manner, with the yields listed in the main text calculated from the isolated, pure products.

Mechanistic studies:

a)

A reaction kettle (15 mL) was charged with ketone (0.5 mmol, 1.0 equiv), and HOTf (0.025 mmol) were added. The mixture was stirred at 120 °C for 12 hours, the reaction was cooled down to room temperature, and diluted with 10 mL of dichloromethane and washed with 10 mL of H_2O . The aqueous layer was extracted twice with dichloromethane (10 mL) and the combined organic phase was dried over Na_2SO_4 . After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/AcOEt = 50: 1) to afford benzene derivatives. All other compounds are synthesized in a similar manner, with the yields listed in the main text calculated from the isolated, pure products.0

b)
$$\frac{\text{Cat. HOTf (5 mol \%)}}{\text{120 °C, 12 h}} + \text{NH}_{4}\text{OTf}$$
 Solvent-free and Under air 5: 94% yield 5: 94% yield

A reaction kettle (15 mL) was charged with benzylamine (1.0 mmol, 1.0 equiv), and HOTf (0.05 mmol) were added. The mixture was stirred at 120 °C for 12 hours, the reaction was cooled down to room temperature, and diluted with 10 mL of dichloromethane and washed with 10 mL of H_2O . The aqueous layer was extracted twice with dichloromethane (10 mL) and the combined organic phase was dried over Na_2SO_4 . After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/AcOEt = 20: 1) to afford the desired product.

A reaction tube (15 mL) was charged with ketone (1.0 mmol, 2.0 equiv), aldehyde (0.5 mmol, 1.0 equiv), ammonium acetate (3.0 mmol, 6.0 equiv), HOTf (0.05 mmol) and toluene (0.5 mL) were added. The mixture was stirred at 120 °C for 12 hours, the reaction was cooled down to room temperature, and diluted with 10 mL of dichloromethane and washed with 10 mL of H_2O . The aqueous layer was extracted twice with dichloromethane (10 mL) and the combined organic phase was dried over Na_2SO_4 . After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/AcOEt = 30:1) to afford the desired product.

A reaction kettle (15 mL) was charged with chalcone (0.5 mmol, 1.0 equiv), and acetophenone (1a, 0.5 mmol, 1.0 equiv), ammonium acetate (3.0 mmol, 6.0 equiv) and HOTf (0.025 mmol) were added. The mixture was stirred at 120 °C for 12 hours, the reaction was cooled down to room temperature, and diluted with 10 mL of dichloromethane and washed with 10 mL of H₂O. The aqueous layer was extracted twice with dichloromethane (10 mL) and the combined organic phase was dried over Na₂SO₄. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/AcOEt = 30: 1) to afford the desired product.

Characterizations of products 3a-3t, 4a-d and 6a-f:

2,4,6-Triphenylpyridine (**3a**): ¹H NMR (400 MHz, DMSO- d_6) δ ppm: δ 8.34 (d, J = 7.2 Hz, 4H), 8.19 (s, 2H), 8.04 (d, J = 6.8 Hz, 2H), 7.49 - 7.59 (m, 9H); ¹³C NMR (100 MHz, DMSO- d_6) δ ppm: δ 157.0, 150.1, 139.3, 138.2, 129.8, 129.7, 129.6, 129.2, 127.8, 127.4, 117.1; HRMS (EI) Calcd. for C₂₃H₁₇N: [M⁺], 307.1361. Found: m/z 307.1364.

2,6-Diphenyl-4-*p*-tolyl-pyridine (**3b**): ¹H NMR (400 MHz, DMSO- d_6) δ ppm: δ 8.33 (d, J = 7.2 Hz, 4H), 8.18 (s, 2H), 7.96 (d, J = 8.4 Hz, 2H), 7.49 - 7.58 (m, 6H), 7.38 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ ppm: δ 156.4, 149.9, 139.5, 139.3, 135.2, 130.2, 129.7, 129.2, 127.6, 127.4, 116.7, 21.3; HRMS (EI) Calcd. for C₂₄H₁₉N: [M⁺], 321.1517. Found: m/z 321.1521.

4-(4-Fluorophenyl)-2,6-diphenylpyridine (**3c**): ¹H NMR (400 MHz, DMSO- d_6) δ ppm: δ 8.36 (d, J = 7.6 Hz, 4H), 8.21 (s, 2H), 8.15 (q, 2H), 7.49 - 7.60 (m, 6H), 7.43 (t, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ ppm: δ 164.7, 162.2, 157.0, 148.9, 139.2, 134.6, 130.1, 129.7, 129.2, 127.4, 116.5; HRMS (EI) Calcd. for C₂₃H₁₆NF: [M⁺], 325.1267. Found: m/z 325.1268.

2,6-Diphenyl-4-m-tolyl-pyridine (**3d**): ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 8.22 (d, J = 7.6 Hz, 4H), 7.87 (q, 2H), 7.41 - 7.55 (m, 9H), 7.29 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 157.5, 150.4, 139.7, 139.1, 138.9, 129.8, 129.1, 128.8, 128.0, 127.2, 127.2, 124.4, 117.2, 21.6; HRMS (EI) Calcd. for C₂₄H₁₉N: [M⁺], 321.1517. Found: m/z 321.1519.

4-(3-Fluoro-phenyl)-2,6-diphenylpyridine (**3e**): ¹H NMR (400 MHz, DMSO- d_6) δ ppm: δ 8.35 (d, J = 7.6 Hz, 4H), 8.24 (s, 2H), 7.91 - 8.00 (m, 2H), 7.47 - 7.58 (m, 8H); ¹³C NMR (100 MHz, DMSO- d_6) δ ppm: δ 164.5, 162.0, 157.1, 148.6, 139.1, 131.5, 129.8, 129.2, 129.1, 128.4, 128.1, 127.5, 117.1; HRMS (EI) Calcd. for C₂₃H₁₆NF: [M⁺], 325.1267. Found: m/z 325.1270.

2,6-Diphenyl-4-thiophen-2-yl-pyridine (**3f**): ¹H NMR (400 MHz, DMSO- d_6) δ ppm: δ 8.29 (d, J = 7.2 Hz, 4H), 8.12 (s, 2H), 8.09 - 8.11 (q, 1H), 7.91 - 8.00 (m, 2H), 7.78 – 7.80 (m, 2H), 7.48 - 7.58 (m, 6H), 7.28 - 7.30 (m, 1H),; ¹³C NMR (100 MHz, DMSO- d_6) δ ppm: δ 157.2, 143.5, 141.2, 138.9, 129.9, 129.3, 129.3, 128.8, 127.6, 127.3, 115.1; HRMS (EI) Calcd. for C₂₁H₁₅NS: [M⁺], 313.0925. Found: m/z 313.0926.

4-Benzyl-2,6-diphenylpyridine (**3g**): ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 8.09 (d, J = 7.2 Hz, 4H), 7.42 - 7.48 (m, 6H), 7.35 - 7.39 (m, 2H), 7.19 - 7.31 (m, 5H), 4.01 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 157.2, 151.4, 139.3, 139.3, 129.2, 129.1, 128.9, 128.8, 127.2, 126.8, 119.5, 41.8; HRMS (EI) Calcd. for C₂₄H₁₉N: [M⁺], 321.1517. Found: m/z 321.1519.

4-Pentyl-2,6-diphenylpyridine (**3h**): ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 8.14 (d, J = 7.2 Hz, 4H), 7.39 - 7.51 (m, 8H), 2.69 - 2.73 (q, 2H), 1.68 - 1.73 (m, 2H), 1.32 - 1.37 (m, 4H), 0.89 - 0.92 (q, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 156.9, 153.2, 139.8, 128.8, 128.7, 127.1, 119.1, 35.8, 31.5, 30.3, 22.6, 14.1; HRMS (EI) Calcd. for C₂₂H₂₃N: [M⁺], 301.1830. Found: m/z 301.1833.

4-Pentyl-2,6-di-p-tolyl-pyridine (**3i**): ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.96 (d, J = 8.0 Hz, 4H), 7.78 (s, 2H), 7.20 (d, J = 8.0 Hz, 4H), 2.59 - 2.63 (q, 2H), 2.33 (s, 6H), 1.61 - 1.65 (m, 2H), 1.28 - 1.29 (m, 4H), 0.81 - 0.84 (q, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 156.8, 153.0, 138.7, 137.1, 129.3, 126.9, 118.5, 35.8, 31.5, 30.3, 22.6, 21.3, 14.0; HRMS (EI) Calcd. for C₂₄H₂₇N: [M⁺], 329.2143. Found: m/z 329.2145.

4-Pentyl-2,6-di-*m*-tolyl-pyridine (**3j**): ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.72 - 7.93 (m, 4H), 7.39 (s, 2H), 7.26 - 7.33 (m, 2H), 7.13 (d, J = 6.8 Hz, 2H), 2.59 - 2.63 (q, 2H), 2.37 (s, 6H), 1.61 - 1.64 (m, 2H), 1.27 - 1.33 (m, 4H), 0.81 - 0.85 (q, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 157.1, 153.1, 139.9, 138.2, 129.6, 128.6, 127.8, 124.3, 119.2, 35.8, 31.6, 30.4, 22.6, 21.7, 14.1; HRMS (EI) Calcd. for C₂₄H₂₇N: [M⁺],

4-Phenyl-2,6-di-thiophen-2-yl-pyridine (**3k**): ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.62 - 7.66 (m, 6H), 7.38 - 7.49 (m, 5H), 7.08 - 7.11 (t, 2H), ; ¹³C NMR (100 MHz, CDCl₃) δ ppm: 152.7, 150.2, 144.9, 138.6, 129.2, 129.2, 128.0, 127.9, 127.1, 124.9, 115.1; HRMS (EI) Calcd. for C₁₉H₁₃NS₂: [M⁺], 319.0489. Found: m/z 319.0484.

2,6-Bis-benzofuran-2-yl-4-phenyl-pyridine (**3l**): ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 8.08 (s, 2H), 7.84 (d, J = 7.2 Hz, 2H), 7.69 (d, J = 7.6 Hz, 2H), 7.64 (s, 2H), 7.48 - 7.60 (m, 5H), 7.34 (t, 2H), 7.29 (t, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 155.4, 155.2, 150.1, 149.9, 138.1, 129.4, 129.2, 128.9, 127.2, 125.3, 123.3, 121.8, 116.8, 111.6, 105.5; HRMS (EI) Calcd. for C₂₇H₁₇NO₂: [M⁺], 387.1259. Found: m/z 387.1265.

2,6-Bis-(4-chloro-phenyl)-4-phenylpyridine (**3m**): ¹H NMR (400 MHz, DMSO- d_6) δ ppm: δ 8.16 (d, J = 7.6 Hz, 4H), 7.90 (s, 2H), 7.76 (d, J = 6.4Hz, 2H), 7.47 - 7.55 (m, 7H); ¹³C NMR (100 MHz, DMSO- d_6) δ ppm: δ 160.9, 155.3, 143.2, 142.5, 139.8, 134.0, 134.0, 133.6, 133.1, 131.9, 121.8; HRMS (EI) Calcd. for C₂₃H₁₅NCl₂: [M⁺], 375.0582. Found: m/z 375.0786.

2,6-Di-naphthalen-2-yl-4-p-tolyl-pyridine (**3n**): ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 8.64 (s, 2H), 8.37 (d, J = 8.4 Hz, 2H), 7.95 - 7.98 (m, 6H), 7.87 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 7.6 Hz, 2H), 7.50 (m, 4H), 7.31 (d, J = 7.6 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 157.5, 150.2, 139.2, 137.1, 136.1, 133.9, 133.6, 129.9, 128.9, 128.5, 127.8, 127.1, 126.6, 126.3, 125.1, 117.3, 21.4; HRMS (EI) Calcd. for $C_{32}H_{23}N$: [M⁺], 421.1830. Found: m/z 421.1832.

4-(4-Fluoro-phenyl)-2,6-di-naphthalen-2-yl-pyridine (**30**): ¹H NMR (400 MHz, DMSO- d_6) δ ppm: δ 8.96 (s, 2H), 8.59 (dd, J = 8.4, 0.8 Hz, 2H), 8.41 (s, 2H), 8.20 - 8.22 (m, 2H), 8.10 - 8.15 (m, 4H), 8.00 - 8.02 (m, 2H), 7.57 - 7.63 (m, 4H), 7.44 -

7.57 (t, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ ppm: δ 150.7, 149.1, 136.6, 134.6, 133.9, 133.6, 130.2, 130.1, 129.2, 128.7, 128.1, 127.3, 127.0, 126.8, 125.3, 116.4; HRMS (EI) Calcd. for C₃₁H₂₀NF: [M⁺], 425.1580. Found: m/z 425.1583.

4-Phenyl-2,6-di-*p*-tolyl-pyridine (**3p**): ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 8.08 (d, J = 8.0 Hz, 4H), 7.81 (s, 2H), 7.71 (d, J = 7.2 Hz, 2H), 7.44 - 7.51 (m, 3H), 7.29 (d, J = 8.0 Hz, 4H), 2.40 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 152.7, 145.3, 134.6, 134.2, 132.2, 124.7, 124.4, 124.1, 122.5, 122.3, 111.8, 16.6; HRMS (EI) Calcd. for C₂₅H₂₁N: [M⁺], 335.1674. Found: m/z 335.1679.

2,4,6-Tri-p-tolyl-pyridine (**3q**): ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 8.09 (d, J = 7.6 Hz, 4H), 7.81 (s, 2H), 7.63 (d, J = 7.2 Hz, 2H), 7.30 (d, J = 6.4 Hz, 6H), 2.42 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 157.4, 149.9, 138.9, 137.0, 129.8, 129.4, 127.0, 116.3, 21.3; HRMS (EI) Calcd. for C₂₆H₂₃N: [M⁺], 349.1834. Found: m/z 349.1830.

4-(4-Fluoro-phenyl)-2,6-di-*p*-tolyl-pyridine (**3r**): ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 8.08 (d, J = 8.0 Hz, 4H), 7.78 (s, 2H), 7.69 - 7.73 (t, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.19 - 7.25 (m, 4H), 2.43 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 164.6, 162.1, 157.5, 149.0, 139.1, 136.8, 129.4, 129.0, 128.9, 127.0, 116.0, 21.4; HRMS (EI) Calcd. for C₂₅H₂₀NF: [M⁺], 353.1580. Found: m/z 353.1582.

2,4,6-Tri-*m*-tolyl-pyridine(**3s**): ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.79 – 8.01 (m, 4H), 7.85 (s, 2H), 7.56 (s, 2H), 7.39 - 7.43 (m, 3H), 7.25 - 7.29 (m, 3H), 2.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 157.7, 150.2, 139.7, 139.1, 138.8, 138.3, 129.8, 129.7, 129.0, 128.6, 127.9, 127.9, 124.4, 117.3, 21.7, 21.6; HRMS (EI) Calcd. for C₂₆H₂₃N: [M⁺], 349.1830. Found: m/z 349.1833.

4-(3-Fluoro-phenyl)-2,6-di-*m*-tolyl-pyridine (**3t**): ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.97 (m, 4H), 7.80 (s, 2H), 7.38 = 7.52 (m, 5H), 7.26 (d, J = 7.6 Hz, 2H), 7.13 - 7.17 (t, 1H), 2.47 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 164.5, 162.1, 157.9, 148.8, 139.4, 138.4, 130.7, 130.0, 128.7, 127.9, 124.4, 122.9, 116.6, 21.7; HRMS (EI)

Calcd. for $C_{25}H_{20}NF$: [M⁺], 353.1580. Found: m/z 353.1581.

1,3,5-Triphenylbenzene (**4a**): ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.78 (s, 3H), 7.70 (d, J = 7.6 Hz, 6H), 7.46 - 7.49 (t, J = 7.6 Hz, 6H), 7.37 - 7.40 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 142.4, 141.2, 128.9, 127.6, 127.4, 125.2; HRMS (EI) Calcd. for C₂₄H₁₉: [M⁺], 306.1409. Found: m/z 306.1406.

1,3,5-Tri-*m*-tolyl-benzene (**4b**): ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.75 (s, 3H), 7.48-7.50 (m, 6H), 7.34 (m, 3H), 7.18 (m, 3H), 2.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 142.4, 141.3, 138.5, 128.8, 128.3, 128.2, 125.2, 124.6, 21.7; HRMS (EI) Calcd. for C₂₇H₂₄: [M⁺], 348.1878. Found: m/z 348.1481.

1,3,5-Tri-*p*-tolyl-benzene (**4c**): ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.73 (s, 3H), 7.59 (d, J = 7.6 Hz, 6H), 7.28 (d, J = 8.0 Hz, 6H), 2.41 (s, 9H). 13C NMR (100 MHz, CDCl₃): δ 142.2, 138.5, 137.3, 129.6, 127.2, 124.6, 21.2; HRMS (EI) Calcd. for $C_{27}H_{24}$: [M⁺], 348.1878. Found: m/z 348.1481.

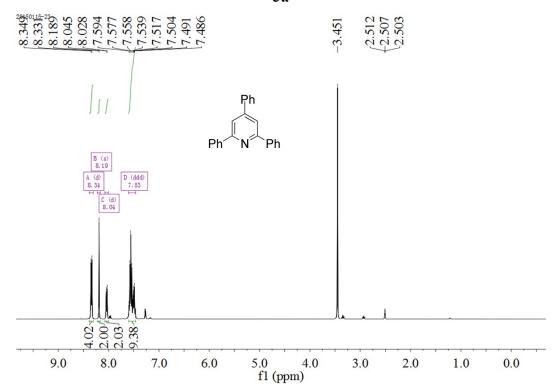
1,3,5-Tri-2-naphthylbenzene (**4d**): ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 8.21 (m, 3H), 7.87 -7.93 (m, 6H), 7.76 (S, 3H), 7.62 (d, J = 6.8 Hz, 3H), 7.49 - 7.57 (m, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 140.8, 139.8, 133.9, 131.6, 130.7, 128.4, 127.9, 127.3, 126.3, 126.0, 125.9, 125.5; HRMS (EI) Calcd. for C₃₆H₂₄: [M⁺], 456.1878. Found: m/z 456.1871.

2,6-Bis-(4-fluoro-phenyl)-4-p-tolyl-pyridine (**6a**): ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.61 (d, J = 8.0 Hz, 2H), 7.57 (s, 2H), 7.50 (t, 2H), 7.25 - 7.29 (m, 8H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 160.1, 148.8, 140.9, 139.2, 136.0, 130.8, 129.9, 128.3, 127.0, 125.9, 120.0, 21.3; HRMS (EI) Calcd. for C₂₄H₁₇NF₂: [M⁺], 357.1329. Found: m/z 357.1332.

2,4,6-Tris-(4-fluoro-phenyl)-pyridine (**6b**): ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 8.18 (d, J = 8.0 Hz, 4H), 7.79 (s, 2H), 7.69 - 7.74 (t, 2H), 7.18 - 7.27 (m, 6H); ¹³C

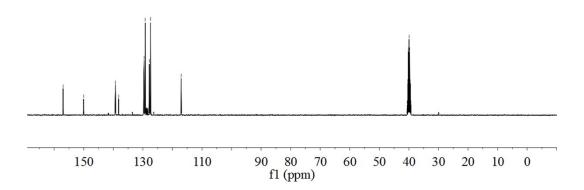
NMR (100 MHz, CDCl₃) δ ppm: δ 164.9, 162.5, 156.6, 149.4, 135.5, 134.9, 128.9, 116.5, 116.3, 116.1, 115.8; HRMS (EI) Calcd. for C₂₃H₁₄NF₃: [M⁺], 361.1078. Found: m/z 361.1082.

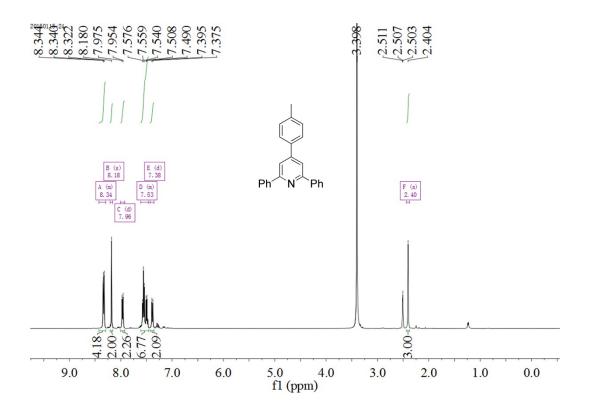
2,6-Bis-(3-fluoro-phenyl)-4-p-tolyl-pyridine (**6c**): 1 H NMR (400 MHz, CDCl₃) δ ppm: δ 8.07 (t, 4H), 7.67 (s, 2H), 7.52 (d, J = 7.6 Hz, 2H), 7.25 (d, J = 7.6 Hz, 2H), 7.09 - 7.16 (m, 4H), 2.37 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ ppm: δ 164.9, 162.4, 156.3, 150.2, 139.3, 129.9, 129.0, 128.9, 127.0, 116.4, 115.7, 21.3; HRMS (EI) Calcd. for $C_{24}H_{17}NF_2$: [M⁺], 357.1329. Found: m/z 357.1333.

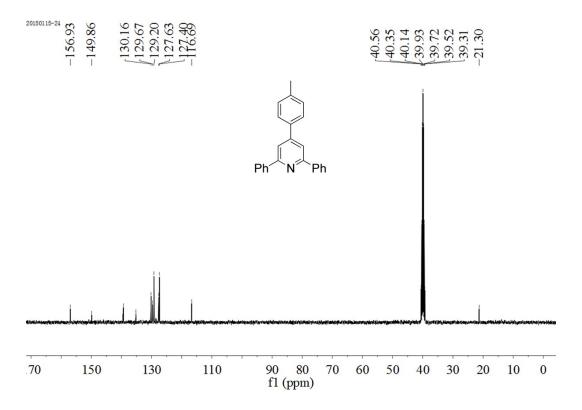

4-(4-Fluoro-phenyl)-2,6-bis-(3-fluoro-phenyl)-pyridine (**6d**): 1 H NMR (400 MHz, CDCl₃) δ ppm: δ 7.95 (t, 4H), 7.85 (s, 2H), 7.42 - 7.52 (m, 5H), 7.13 - 7.22 (m, 3H); 13 C NMR (100 MHz, CDCl₃) δ ppm: δ 164.6, 162.2, 156.3, 149.3, 141.3, 130.8, 130.3, 122.9, 122.6, 117.5, 116.2; HRMS (EI) Calcd. for C₂₃H₁₄NF₃: [M⁺], 361.1078. Found: m/z 361.1079.

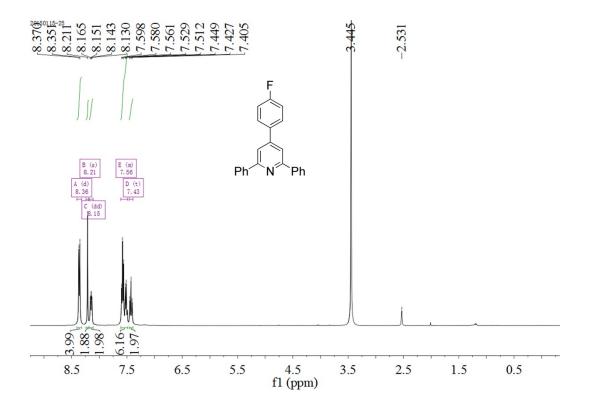
2,6-Bis-(2-fluoro-phenyl)-4-p-tolyl-pyridine (**6e**): ¹H NMR (400 MHz, CDCl₃) δ ppm: δ 7.92 (m, 4H), 7.85 (s, 2H), 7.62 (d, J = 8.0 Hz, 2H), 7.43 - 7.49 (m, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.11 - 7.15 (m, 2H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ ppm: δ 164.6, 162.2, 156.1, 150.5, 141.7, 139.4, 135.6, 130.2, 130.0, 127.0, 122.6, 117.4, 116.0, 114.2, 21.3; HRMS (EI) Calcd. for $C_{24}H_{17}NF_2$: [M⁺], 357.1329. Found: m/z 357.1330.

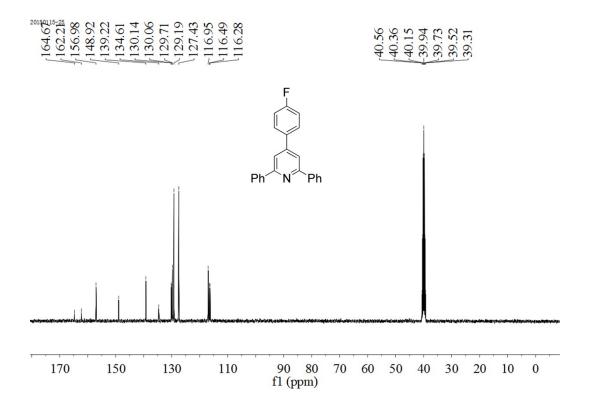
4-(4-Fluoro-phenyl)-2,6-bis-(2-fluoro-phenyl)-pyridine (**6f**): 1 H NMR (400 MHz, CDCl₃) δ ppm: δ 8.16 (t, 2H), 7.93 (s, 2H), 7.69 (m, 2H), 7.36 (m, 2H), 7.29 (t, 2H), 7.16 - 7.20 (m, 4H); 13 C NMR (100 MHz, CDCl₃) δ ppm: δ 164.7, 162.3, 162.0, 159.5, 153.7, 148.1, 134.7, 131.3, 130.6, 129.1, 127.5, 124.6, 121.2, 116.4; HRMS (EI) Calcd. for $C_{23}H_{14}NF_{3}$: [M⁺], 361.1078. Found: m/z 361.1080.

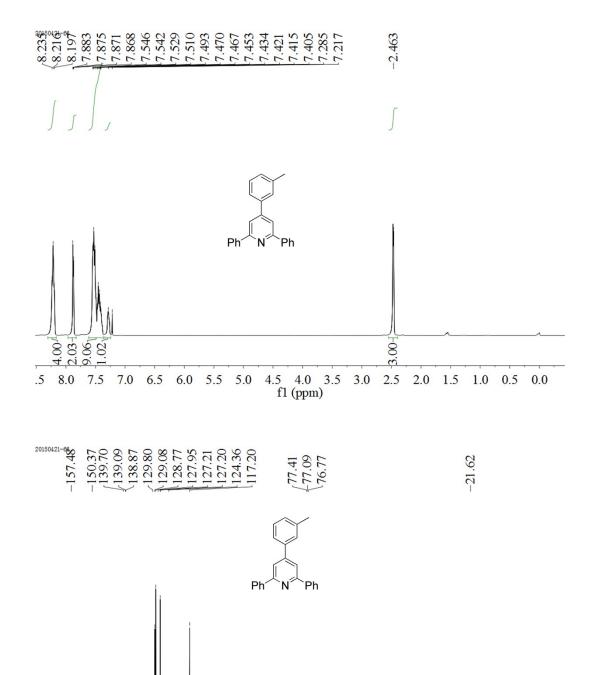

¹H and ¹³C spectra of products 3a-3t, 4a-d and 6a-f:

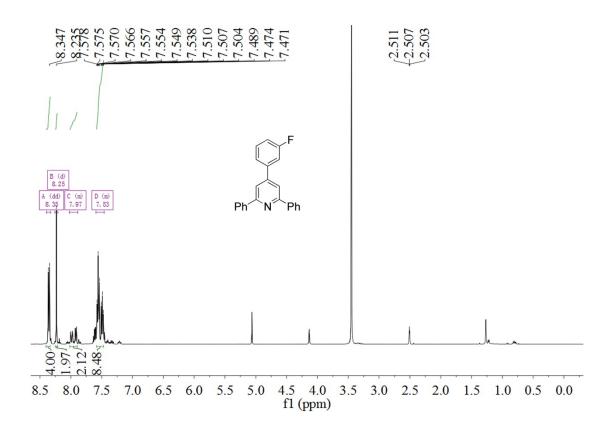


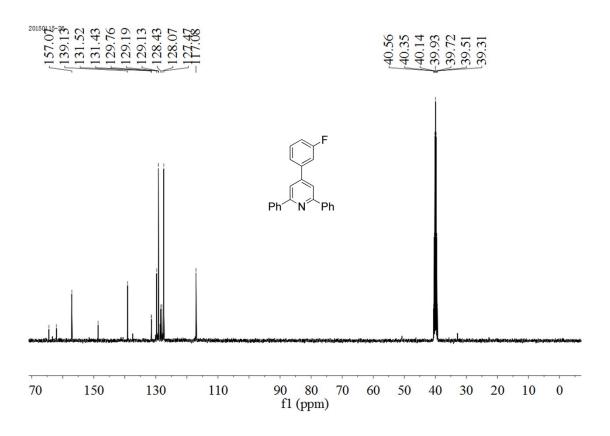


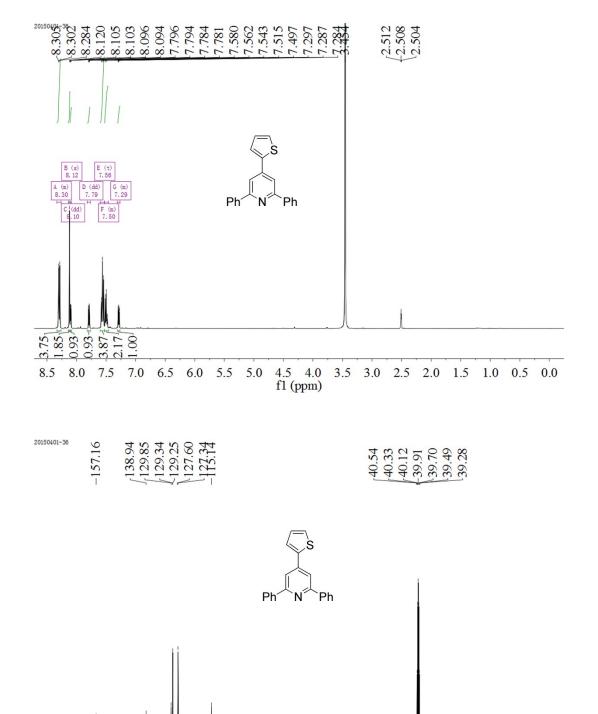

-156.99 -150.05 -150.05 -129.56 -127.82 -177.83

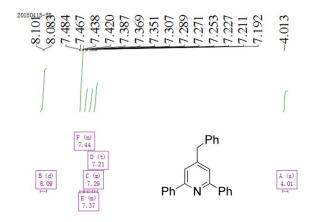

40.57 40.36 40.15 39.95 39.74 39.53 39.32

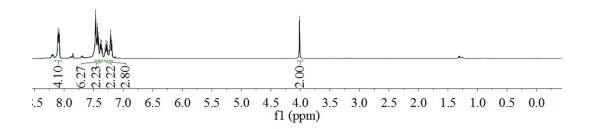


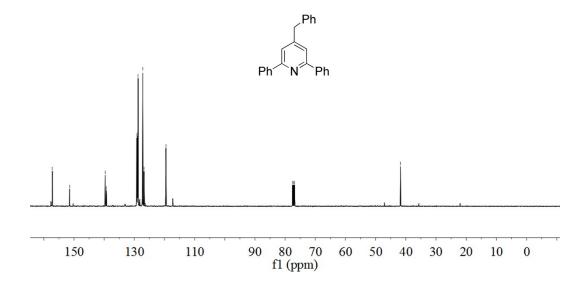


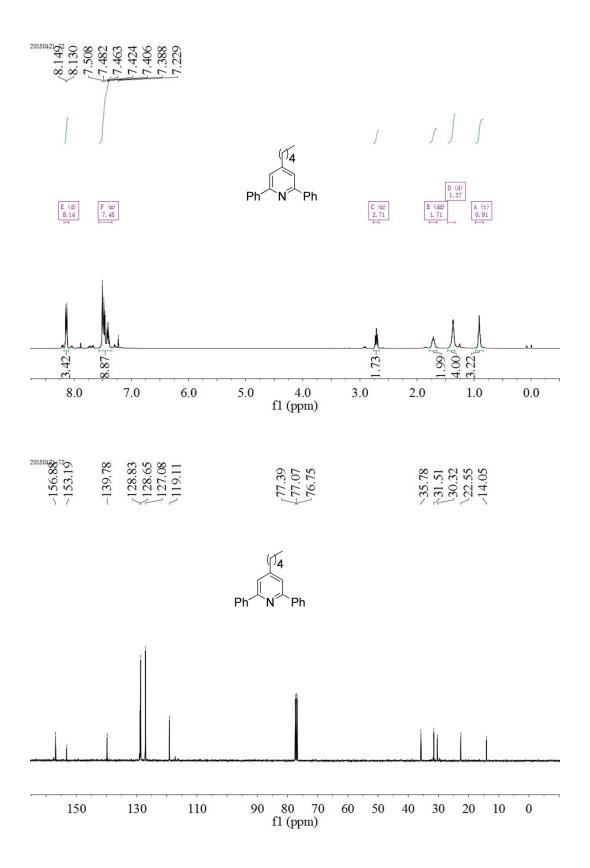


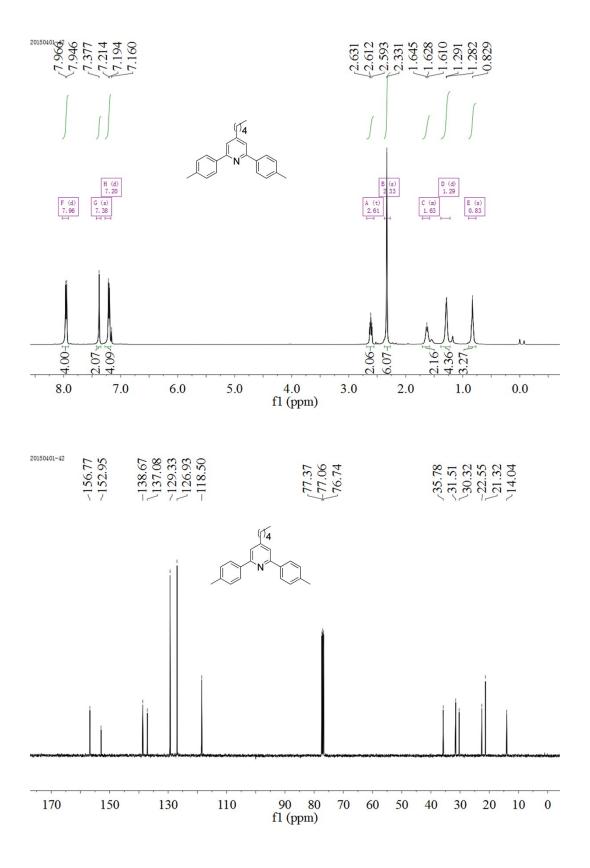


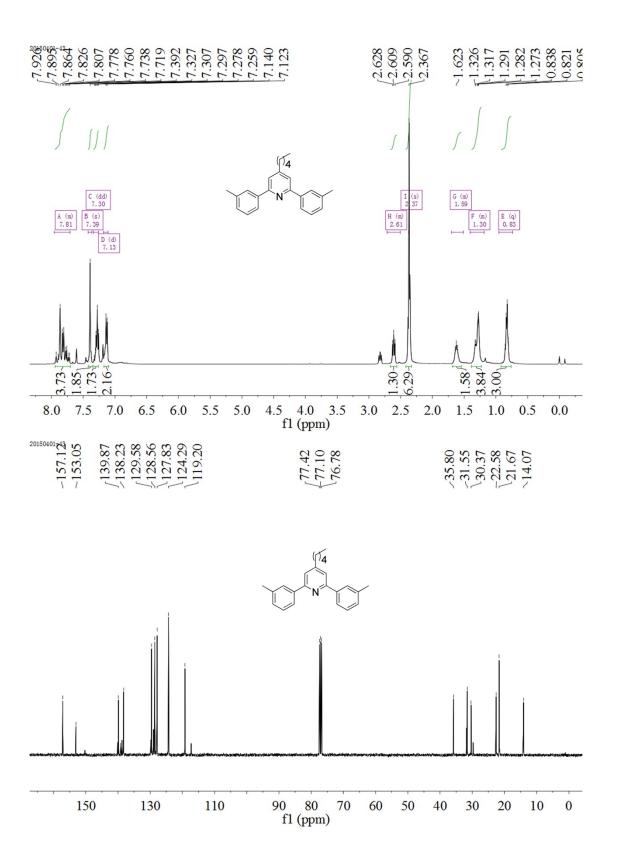

90 80 70 60 50 fl (ppm)

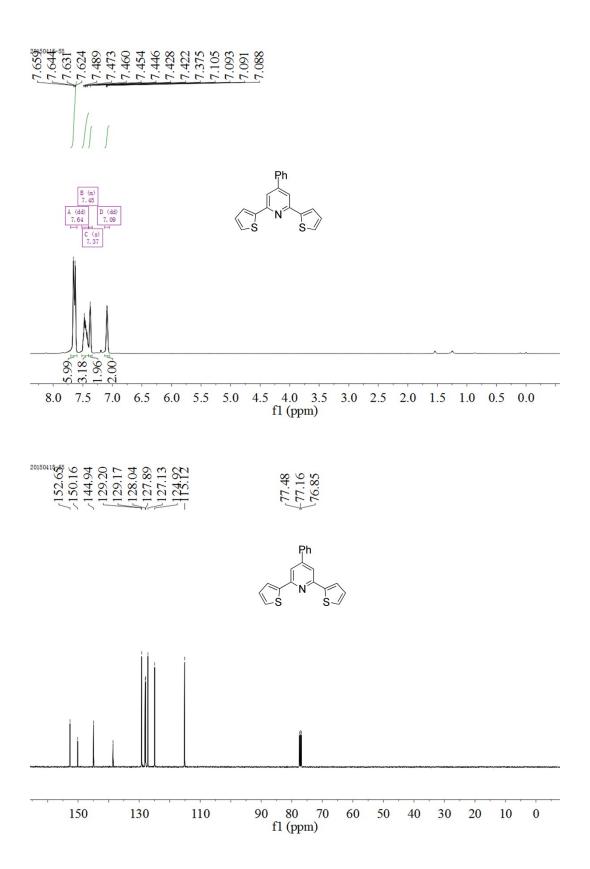


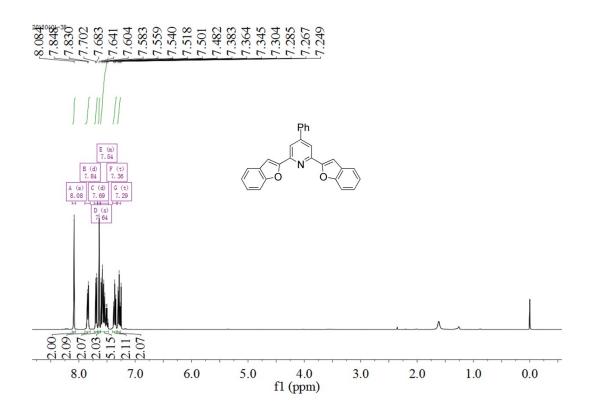


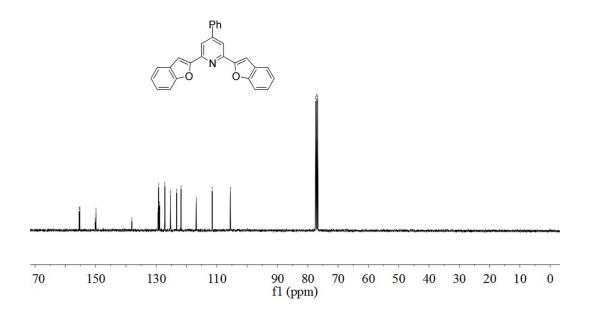

90 80 70 60 50 40 30 20 f1 (ppm)

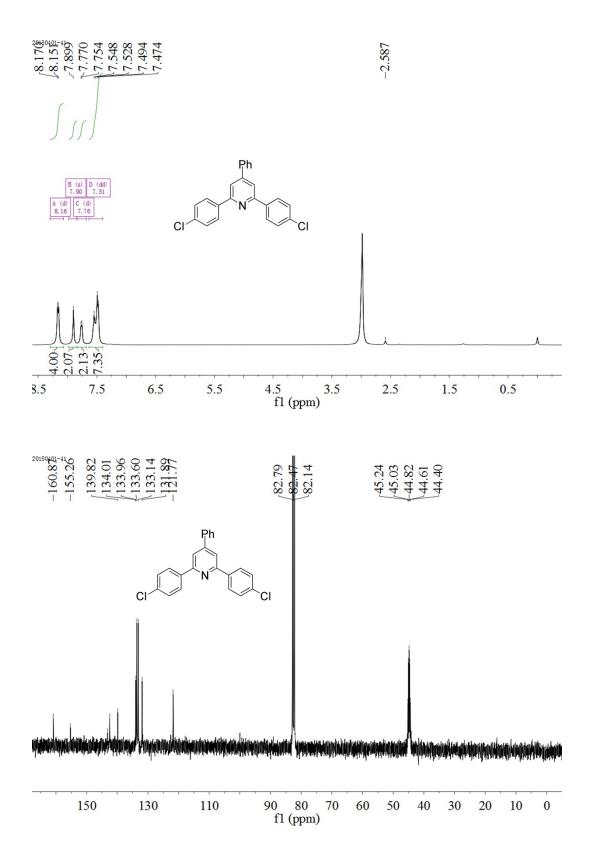


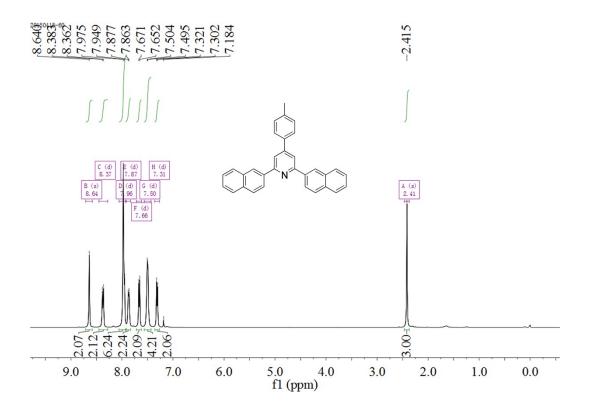


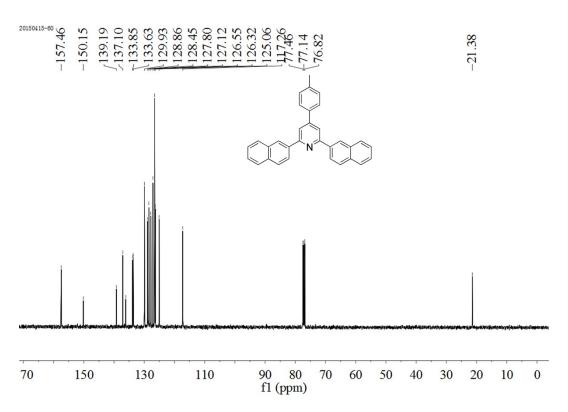

139.64 139.64 139.64 129.05 128.75 128.75 119.50 119.50 76.90

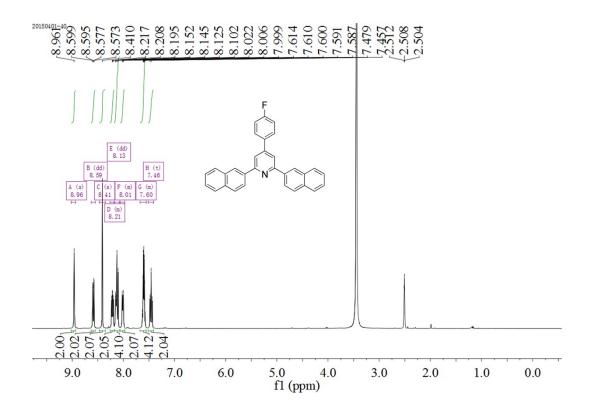


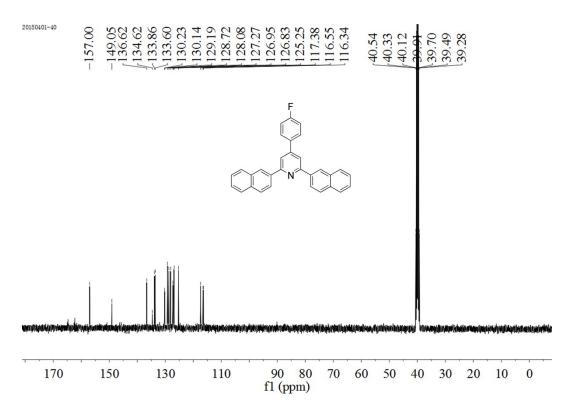


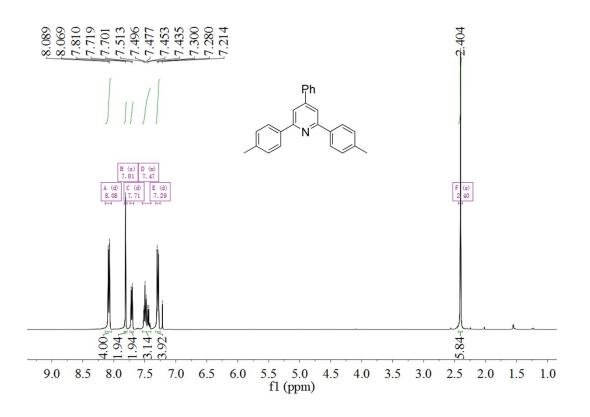


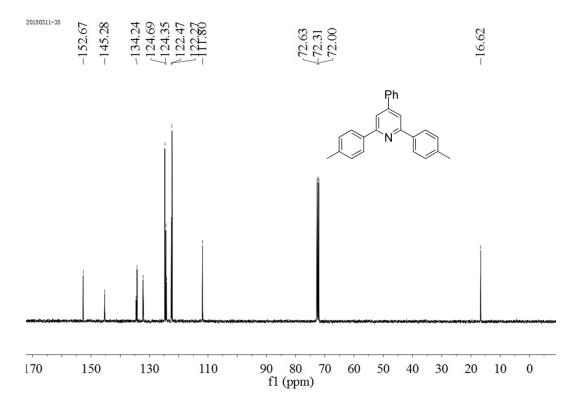


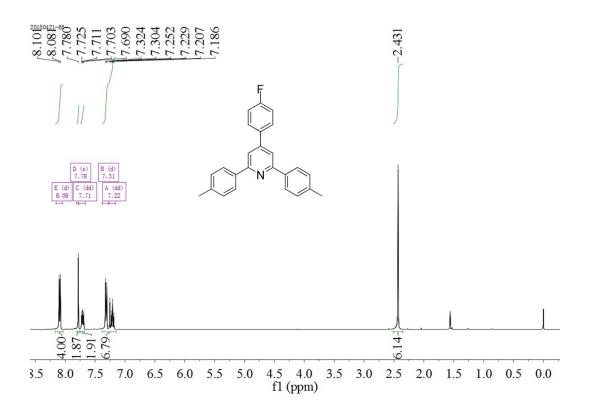


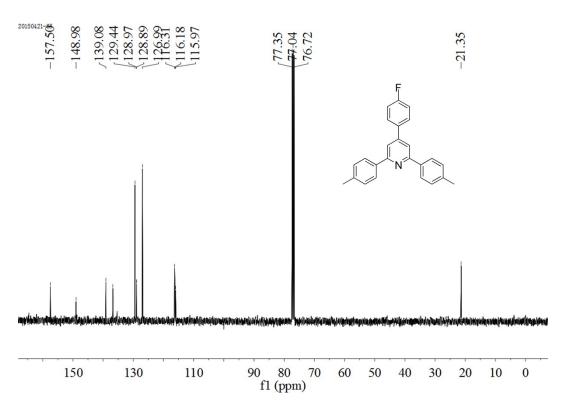


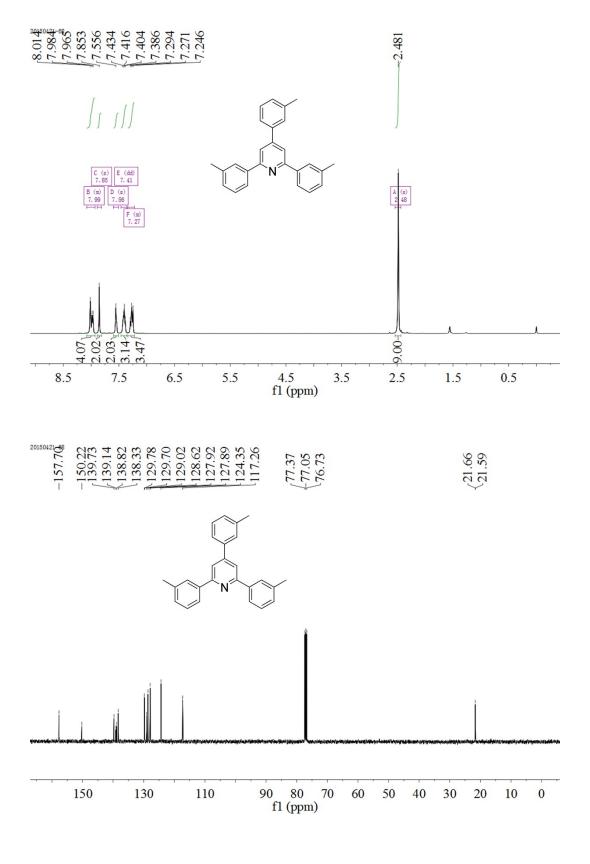


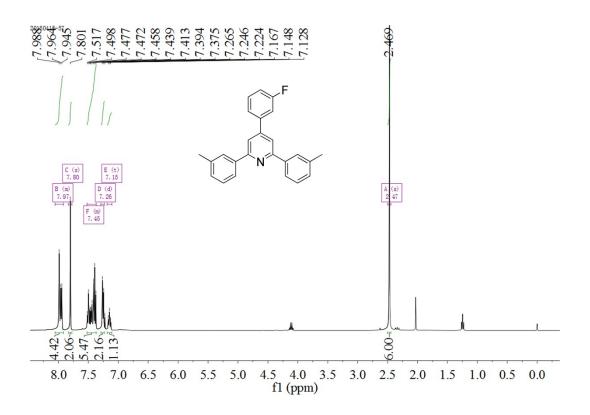


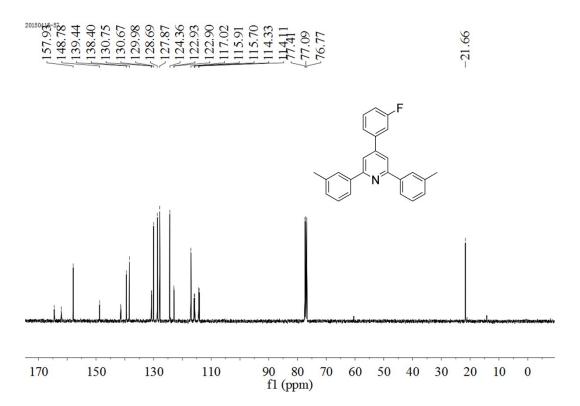











90 80 70 fl (ppm)

