Whole Plant Cell Wall NMR with Ionic Liquids: A Powerful Tool in Biofuel Research

Marcus Foston^{1,2,*}, Reichel Samuel³, Jian He², and Arthur J. Ragauskas^{1,3,4}

¹BioEnergy Science Center
²Washington University in St. Louis, Department of Energy, Environmental & Chemical Engineering, St. Louis, MO, USA
³Georgia Institute of Technology, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Atlanta, GA, USA
⁴Department of Chemical and Biomolecular Engineering, Department of Forestry, Wildlife, and Fisheries, University of Tennessee, Knoxville, TN, USA

Supplementary Table 1 Represents the typical chemical shift assignments of 1D ¹³C NMR spectra of biomass in DMSO-d₆.

Assignments	¹³ C Chemical Shift (ppm)
C=O in φ-COOH	179-173
C=O in φ-COOR	167-168
C=O in Ar-C=C-COOR	168-166
H_4	164-158
$G_{3/4}$, $S_{3/5}$, and C_{α} in Cinnamate	157-140
$\mathbf{S}_{1/4}$ and \mathbf{G}_1	140-123
G_6	123-117
H _{3/5} , G ₅ , C _{β} in Cinnamate	117-113
G_2	113-110
$\mathbf{S}_{2,6}$	110-106
C ₁ in Cellulose and Hemicellulose	105-98
C _{2,3,4,5} in Cellulose, C _{2,3,4} in Hemicellulose, and Lignin Side Chains	s 94-65
C ₆ in Cellulose, C ₅ in Hemicellulose, and Lignin Side Chains	65-58
Methoxy	57-54
Acetate-Methyl	22-20