Synthesis of glycidyl azide polymers (GAPs) via binary ionic liquid–water mixtures without catalysts

Xiaodong Xu,^{a,b} Meihua Liu, *^a Yuan Yin, ^a Chunbai Zheng, *^a Pengyang Deng^a and Dongfeng Xue^a

^a Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. E-mail: zhengcb@ciac.ac.cn; Fax: +86-431-85262329; Tel: +86-431- 85262716.

^b University of Chinese Academy of Sciences, BeiJing10039, China.

Supporting Information

General Methods: The GAP synthesis was carried out in a 250 ml three-necked round bottom flask equipped with a thermometer, a reflux condenser, and a mechanical stirrer. The 30.00 g of PECH was dissolved in mixed solvents with a different mass ratio of [Bmim]Cl and distilled water and stirred. The solution was heated to 95°C in an oil bath, and then 21.09 g of sodium azide was rapidly added into the reaction mixture with continued stirring for 10 h at this temperature. The reaction was monitored with quantitative ¹³C-NMR. After the reaction finished, the mixtures were washed sequentially with distilled water more than 3 times until all salts were removed. The water was then evaporated to recover the products.

Table 1.

Entry	[bmim][Cl]/	PECH	NaN ₃	Time	Т	Yield ^b
	H_2O^a	g	g	h	°C	%
1	4:1	30	21.09	10	95	89.17
2	5:1	30	21.09	10	95	56.52
3	100:0	30	21.09	10	95	50
4	1:1	30	21.09	10	95	45.7
5	2:3	30	21.09	10	95	37.5
6	1:4	30	21.09	10	95	24.82
7	0:100	30	21.09	10	95	0

^{*a*} mass ratio ^{*b*} Isolated yields

Fig.1. ¹H-NMR spectra of GAP¹ and PECH.

Fig.3. ¹³C-NMR spectra of GAP1.

Fig.5. ¹³C-NMR spectra of GAP2.

Fig.7. ¹³C-NMR spectra of GAP3.

Fig.9. ¹³C-NMR spectra of GAP4.

-CH2-CI

Fig.11. ¹³C-NMR spectra of GAP5.

Fig.12. IR spectra of GAP6.

Fig.13. ¹³C-NMR spectra of GAP6.

Fig.14. IR spectra of GAP7.

Fig.15. ¹³C-NMR spectra of GAP7.

[1] Joshua Aronson, Georgia Insitute of Technology, 2009.

[2] Y.V. Nacharaiah, A.J. Francis, *Chemosphere*, 2015, **128**, 178.

[3] B. G. Kim, E. H. Sohn, J. S. Chung, S. Y. Kwak and J. C. Lee, *J Appl Polym Sci*, 2009, **114**, 132.