Supplementary Information for

$Fe_{1-x}S/C$ nanocomposites from sugarcane waste-derived microporous carbon for high-performance lithium ion batteries

Chundong Wang,^{abc} Minhuan Lan,^c Yi Zhang,^d Haidong Bian,^c Muk-Fung Yuen,^c Kostya (Ken) Ostrikov,^{ef} Jianjun Jiang,^a Wenjun Zhang,^c Yang Yang Li^{c*} and Jian Lu^{b*}

^c Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University **Fig. Signifold Ages State Bon Childents** in microporous carbon (MC) with the thin and flexible edge **inclicated** Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430073, P.R. China

^e School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia

^f Plasma Nanoscience, Industrial Innovation Program, CSIRO Manufacturing Flagship, Lindfield, New South Wales 2070, Australia

Author to whom correspondence should be addressed. E-mail: yangli@cityu.edu.hk (Y.Y. Li), jianlu@cityu.edu.hk (J. Lu)

† Electronic supplementary information (ESI) available. See DOI: XXX

Fig. S2 Nitrogen adsorption–desorption isotherms of microporous carbon and $Fe_{1-x}S$ -MC at 77 K.

Fig. S3 EDX mapping of Fe_{1-x} S-MC, suggesting the uniform distribution of the Fe_{1-x} S nanoparticles on MC.

Fig. S4 The TGA curve of the FeS_{1-x} -MC nanocomposites.

Fig. S5 XRD pattern of microporous carbon.

Fig. S6 SEM images of the as-synthesized HT product (a) and Fe_{1-x} S particles (b).

Fig. S7 SEM images of microporous carbon after surface functionalization through acid treatment.

Fig. S8 SEM images of the Fe_{1-x}S-MC nanocomposite after 200 LIB charging/discharging cycles at 100 mA g^{-1} .

 Table S1 Cycling performance comparison of the iron sulfide-based LIB anodes tested at constant

 current densities.

Anode structure	Current density (mAg ⁻¹)	Specific capacity (mAhg ⁻¹)	Cycle #	Capacity retention (%)	Year Published	Reference
Ultrathin C@FeS nanosheets	100	615	100	99	2012	[48]
FeS-embedded carbon microsphere	50	736	50	77	2011	[49]
TiO ₂ modified FeS	100	635	100	>100	2013	[59]
High energy milled FeS	(0.05 mA/ cm ²)	522	15	95	2005	[60]

Fe _{1-x} S -MC	200	(20)	40	05		This work
	100	1185	200	142		
core–shell Fe ₇ S ₈ @C	100	695	50	_	2015	[63]
FeS/C-3wt%Bi ₂ O ₃	300	325	200	99.2	2015	[62]
FeS microsheet networks	100	677	20	97	2015	[61]
RGO wrapped FeS nanocomposites	100	978	40	90	2013	[55]