Supramolecular ensemble of PBI derivative and Cu₂O NPs: Potential photo catalysts for Suzuki and Suzuki type coupling reactions

Gurpreet Singh, Manoj Kumar, Kamaldeep Sharma and Vandana Bhalla*

Department of Chemistry, UGC-Centre for Advanced Studies-II, Guru Nanak Dev University,

Amritsar, Punjab, India.

Email : <u>vanmanan@yahoo.co.in</u>

Contents

S3-S4 Comparison tables

- S5 Synthetic scheme and synthesis of compound 2.
- S6 TEM image of derivative 1 and fluorescence spectra of derivative 1 upon addition of Benedict's solution.
- S7 XRD spectrum of Cu₂O NPs and TEM images of spherical supramolecular ensemble
 2:Cu₂O at different conc. of derivative 1.
- S8 Overlay NMR spectra of derivative 1 and oxidized of derivative 1 and FTIR absorption spectra of Cu₂O NPs.
- S9 Fluorescence spectra of oxidized species 2 (10 μ M) upon addition Cu₂O NPs.
- S10 Exponential fluorescence decays and fluorescence lifetime data of oxidized species of 2 on addition of various amounts of bare Cu₂O NPs.
- S11 Spectral overlap of absorption spectrum of Cu_2O NPs and emission spectrum of oxidized species of 1 and UV-vis spectra of oxidized species 2 (10 μ M) upon addition Benedict's solution.
- S12 Catalytic efficiency of supramolecular ensemble 2:Cu₂O for photocatalytic Suzuki coupling reaction of bromobenzene with phenyl boronic acid and TEM image of spherical supramolecular ensemble 2:Cu₂O; recovered after photocatalytic Suzuki coupling.

- **S13** Atomic absorption Studies (AAS) of the residual liquid left after the after the recycling of the catalyst.
- **S14** 1 H NMR of compound **5**.
- **S15** ¹H NMR of compound **7a**.
- **S16** ¹H NMR of compound **7b**.
- **S17** ¹H NMR of compound **7c**.
- S18 ¹H NMR of compound 7d.
- **S19** ¹H NMR of compound 7e.
- S20 1 H NMR of compound 7f.
- **S21** ¹H NMR of compound **9d**.
- **S22** ¹H NMR of compound **11c**.
- **S23** ¹H NMR of compound 1.
- **S24** ¹H NMR of compound **12**.
- S25 ¹H NMR of compound 13.
- **S26** ¹H NMR of compound **15a**.
- **S27** ¹H NMR of compound **15b**.
- **S28** ¹H NMR of compound **15c**.
- **S29** ¹H NMR of compound **15d**.
- **S30** ¹H NMR of compound **2**.
- S31 Mass spectrum of compound 2.

Table S1: Comparison of method for the preparation of supramolecular ensemble 2: Cu_2O in this manuscript with other reported methods in the literature for the preparation of Cu_2O NPs.

Entry	Method of preparation of NPs	NPs	Reducin g agent	Special additive or surfactant	Temp. (° C)	Time	Shape of NPs	Recyclabilit y /Reusability	Application of NPs	Journals
1	Wet chemical method	Supramolecu lar ensemble 2:Cu ₂ O	NO	NO	Room temp.	8 h	Spherical	Yes	Photocatalytic Suzuki coupling	Present manuscript
2	Chemical method	Cu ₂ O NPs	Yes	Yes	15	30 min	Rod	No	NH ₃ gas sensing.	J. Mater. Chem. A, 2015, 3, 1174– 1181
3	Chemical method	Cu ₂ O NPs	Yes	Yes	80-90	2-3 h	Spherical	No	antibacterial activity	RSC Adv., 2015, 5, 12293–12299 12293
4	Chemical method	Cu ₂ O NPs	Yes	Yes	80	12 h	Cube	No	-	CrystEngCom m, 2011, 13, 6265–6270
5	Chemical method	Cu ₂ O NPs	Yes	Yes	30-50	30–90 min,	Cube	No	-	CrystEngCom m, 2011, 13, 4060–4068
6	Chemical method	Cu ₂ O NPs	Yes	Yes	80	10 h	Cube,octa hedron and sphere	No	-	Crystal Growth & Design, Vol. 10, No. 1, 2010
7	Chemical method	Cu ₂ O NPs	Yes	Yes	150	18 h	Octahedro n Microcrys tals	No	Photocatalytic	Crystal Growth & Design, Vol. 10, No. 5, 2010
8	Chemical method	Cu ₂ O NPs	Yes	Yes	140	1 h	Spherical and cube	No	-	J. Mater. Chem., 2008, 18, 4069-4073
9	Chemical method	Cu ₂ O NPs	Yes	Yes	Room temp	30 min	Cube	No	-	J. Mater. C hem., 2004, 14,735-73 8
10	Chemical method	Cu ₂ O NPs	Yes	No	60-80	4 h	octahedral to microrod	No	-	CrystEngCom m, 2012, 14, 8338–8341

Entry	Source of light	Photo catalyst	Amount of catalyst	Reaction conditions	Reaction temp	Time	TOF (h ⁻¹)	Recyclability /Reusability	Journals	
1	100 W tungsten filament bulb	Supramolecular ensemble 2:Cu ₂ O	0.02 mmol	H ₂ O/EtOH (1:1), K ₂ CO ₃ (1.5 eq.)	Room temp.	8 h	1.45 (bromobenzene)	Yes	Present manuscript	
2	300 W Xe lamp	Pd/SiC	10 mg	DMF/H ₂ O (3:1), Cs ₂ CO ₃ (3 eq.)	30 °C	1.33 h	1053 (Iodobenzene)	Yes	J. Phys. Chem. C 2015, 119 , 3238–3243	
3	Xe lamp (150W)	Pd/Au/PN-CeO ₂	15 mg	DMF/H ₂ O (3:1), 0.6 mmol K ₂ CO ₃ ,	Room temp.	1 h	-	Yes	ACS Catal. 2015, 5, 6481–6488	
4	100 W tungsten filament bulb	Ag@Cu ₂ O	0.02 mmol	H ₂ O/EtOH (3:1), K ₂ CO ₃ (1.5 eq.)	Room temp.	5 h	-	Yes	Chem. Commun., 2015, 51, 12529-12532	
5	White LED lamp	Pd@B-BO ₃	10 mg	DMF/H ₂ O (1:1), K ₂ CO ₃ (1.5 eq.)	Room temp.	2 h	-	Yes	<i>Chem. mater.</i> 2015, 27 , 1921	
6	500 W Xe lamp	Ru–Pd bimetallic complex	5 × 10 ⁻⁴ mmol	EtOH, PPh ₃ , K ₂ CO ₃ , Ar-atmosphere	Room temp.	6 h	-	No	<i>Chem.</i> <i>Commun.</i> , 2014, 50 , 14501-14503	
7	Halogen lamp	Au–Pd alloy NP	50 mg	DMF/H ₂ O (3:1), K ₂ CO ₃ (3 eq.), Ar atmosphere	30 °C	6 hr	14.5 (bromobenzene)	Yes	Green Chem., 2014, 16 , 4272–4285	
8	Sunlight	Au–Pd nanostructures	0.49 µmol	NaOH, CTAB, H ₂ O	Room temp.	2 h	162 (bromobenzene)	Yes	J. Am. Chem. Soc. 2013, 135 , 5588–5601	

Table S2: Comparison of catalytic efficiency of supramolecular ensemble 2: Cu_2O for the photocatalytic Suzukicoupling reactions with other reported photocatalysts in literature. Scheme 1: Synthetic scheme of compound 2.

Synthesis of compound 2. To a solution of derivative 1 (50 mg, 0.05 mmol) and $CuCl_2.2H_2O$ (0.45 mg, 0.06 mmol) in acetonitrile/THF (3:1) mixture was slowly added aqueous 'BuOOH (11.76 µL, 0.05 mmol, 70% in water) over 24 h. The resulting reaction mixture was stirred at room temperature until the disappearance of starting material (TLC). After completion of the reaction, the solvent was evaporated and to the resulting crude reaction mixture water was added. The pH was adjusted to 8.0–8.5 with saturated sodium bicarbonate solution and then the reaction mixture was extracted with ethyl acetate. The aqueous layer was acidified to pH 2.0 using 2 N HCl and extracted with ethyl acetate. The organic layer was concentrated and purified by silica gel column chromatography to give the carboxylic acid.

Fig.S1: TEM image of derivative 1 showing irregular shapes aggregates.

Fig.S2: Fluorescence spectra of derivative 1 (10 μ M) upon addition of Benedict's solution (350 μ L, 0.04 M).

Fig. S3: X-Ray Diffraction (XRD) pattern of Cu₂O NPs.

Fig. S4: (A) TEM images of spherical supramolecular ensemble 2:Cu₂O; (A) 2:1 (derivative 1: Benedict's solution); (B) 1:2 (derivative 1 : Benedict's solution)

Fig. S5: Overlay NMR spectra of derivative 1 and residue obtained after filtration with THF/CHCl₃ mixture.

Fig. S6: FT infrared absorption spectra of derivative 1 and residue obtained after filteration with THF/CHCl₃.

Fig. S7: Fluorescence spectra of oxidized species 2 (10 μ M) upon addition Cu₂O NPs (300 μ L).

Time (ns)

Fig. S8: Exponential fluorescence decays of oxidized species of 2 on addition of various amount of bare Cu₂O NPs measured at 600 nm. Spectra were acquired in Water-THF mixture (1:1), λ_{ex} = 540 nm.

Table S3: Fluorescence lifetime of oxidized species of 2 on addition of various amount of bare Cu₂O NPs measured at 600 nm in Water-THF mixture (1:1). A₁, A₂: fractional amount of molecules in each environment. τ_1 , τ_2 and τ_{avg} : bi-exponential and average life time; λ_{ex} = 540 nm.

Sample	A ₁	A ₂	τ ₁ (ns)	τ ₂ (ns)	$ au_{avg}(ns)$
Cpd 3 oxidized	100	-	7.12	-	7.12
Cpd 3 Oxidized + Cu_2O NPs (100 μ L)	100	-	6.84	-	6.84
Cpd 3 Oxidized + Cu ₂ O (200 μ L)	100	-	6.47	-	6.47
Cpd 3 Oxidized + Cu ₂ O (300 μ L)	20.38	79.62	0.91	6.46	2.87

Fig. S9. Spectral overlap of absorption spectrum of Cu₂O NPs and emission spectrum of oxidized species 2.

Fig.S10: UV-vis spectra of oxidized species 2 (10 µM) upon addition Benedict's solution (350 µL, 0.04 M).

Entry	Catalyst loading	Time (h)	Yield (%)		
1	0.02	0	75		
	0.02 mmol	8	/5		
2	0.01 mmol	10	72		
3	0.005 mmol	12	68		

Table S4.: Catalytic efficiency of supramolecular ensemble 2:Cu₂O for photocatalytic Suzuki coupling reaction of bromobenzene with phenyl boronic acid.

Fig. S11: TEM image of spherical supramolecular ensemble $2:Cu_2O$; recovered after photocatalytic Suzuki coupling reaction. Scale bar 50 nm.

SpectrAA Report.		15:22 05-02-2016						
Analyst Date Started Worksheet Comment Methods Computer name Serial Num ber:	16:06 02-02-2016 GMT Gurpreet020216 Qu,Qu HP-PC	F: 10:36 02-0	02-2016					
	Method: Cu (Flame)							
Sample ID CALZERO		Conc mg/l 0.000	L	%RSD 23.6	SD 0.0000	Mean A 0.0002	bs	
		0.0002	0.0002		0.0001		02-02-2016	16:16:06
			1 0 0 0 0					
STANDARD 1		1.000 Readings	1.0000	1.4	0.0009	0.0605		
		0.0595	0.0610		0.0610		02-02-2016	16:16:38
			ISF					
			1.0000					
STANDARD 2		3.000 Readings		1.1	0.0022	0.1978		
		0.2002	0.1975		0.1957		02-02-2016	16:17:08
			ISF 1.0000					
STANDARD 3		5.000 Readings		0.7	0.0024	0.3283		
		0.3260	0.3307		0.3282		02-02-2016	16:17:38
			ISF 1.0000					
Sample 001		0.012 Readings		10.9	0.0001	0.0007		
		0.0007	0.0006	5	0.0008		02-02-2016	16:20:04
			ISF 1.0000					

Fig. S12: Atomic absorption Studies (AAS) of the residual liquid left after the after the recycling of the catalyst and found that only 0.012 mg/lit = 0.012 ppm of copper leached into the solution.

¹H NMR spectra of products of the photocatalytic Suzuki coupling reactions using different substrates.

Fig. S13: The 1H NMR spectrum of compound 5 in CDCl₃.

Fig. S14: The ¹H NMR spectrum compound 7a in CDCl₃.

Fig.S15: The ¹H NMR spectrum compound 7b in CDCl₃.

Fig.S16: The ¹H NMR spectrum of compound 7c in $CDCI_3$.

Fig.17 The ¹H NMR spectrum of compound 7d in CDCl₃.

Fig.S18: The ¹H NMR spectrum of compound 7a in CDCl₃.

Fig.S19: The 1H NMR spectrum of compound 7f in CDCl₃.

Fig.S20: The ¹H NMR spectrum of compound 9d in CDCl₃.

Fig.S21: The ¹H NMR spectrum of compound **11c** in CDCl₃.

Fig.S22: The ¹H NMR spectrum of compound 1 in CDCl₃.

Fig.S23: The ¹H NMR spectrum compound **12** in CDCl₃.

Fig.S24: The ¹H NMR spectrum of compound **13** in CDCl₃.

¹H NMR spectra of products of the photocatalytic Suzuki type coupling reactions using different substrates.

Fig.S25: The ¹H NMR spectrum of compound **15a** in CDCl₃.

Fig. S26: The ¹H NMR spectrum of compound **15b** in CDCl₃.

Fig.S27: The ¹H NMR spectrum of compound 15c in CDCl₃.

Fig.S28: The ¹H NMR spectrum of compound **15d** in CDCl₃.

Fig.S29: The ¹H NMR spectrum of compound 2 in CDCl₃.

Fig.S30: The mass spectrum of compound 2 in CDCl₃.