
Supplementary Information

Quantifying cell-induced matrix deformation in three dimensions based on
imaging matrix fibers

Jacob Notbohm,1† Ayelet Lesman,2† David A. Tirrell,2 Guruswami Ravichandran1∗

1Division of Engineering and Applied Science, California Institute of Technology
2Division of Chemistry and Chemical Engineering, California Institute of Technology

Pasadena, CA, USA

∗Correspondence to: ravi@caltech.edu.
†These authors contributed equally to this work.

Electronic Supplementary Material (ESI) for Integrative Biology.
This journal is © The Royal Society of Chemistry 2015



Supplemental Note: Scaling of matrix fiber density over distance

In the experiments described in Fig. 3, a sphere is placed under compression within a fibrous
matrix. The linear elastic solution for displacements within the matrix is given by Goodier [27],
which shows radial displacements ur are ur = Ar−2 +Br−4 where r is distance from the sphere and
A and B are constants. For an axisymmetric geometry, normal strains in the radial and angular
(hoop) directions are given by εrr = ∂ur/∂r and εθθ = ur/r. Thus, for r � 1, both normal strain
components scale as

εrr, εθθ ∼ r−3. (1)

If the fibrous matrix behaves as a linear elastic material, the strains can be related to the fluorescence
intensity, and thus the scaling of fluorescence intensity with distance can be computed. In the
compression experiment of Fig. 3, the matrix far from the sphere is under uniform strain in the
z direction, εzz. Near the sphere, the matrix has strain tensor components in all three normal
directions, εrr, εθθ, εzz. Consider three different states of strain within the matrix. State 0 is
a reference state that is completely free of strain and stress. State 1 represents the far field
strain, with a normal strain component along the axial z direction given by εzz = ε and all
other components of the strain tensor equal to zero. State 2 represents the strain near the sphere
with strain tensor components given by εzz = ε and nonzero strain tensor components εrr and
εθθ. Assume fluorescence intensity is linearly proportional to fiber density ρ, which is inversely
proportional to local volume V . From linear elasticity, the relative change in volume from a
reference to a current state (Vi − V0)/V0 is equal to the trace of the strain tensor, with i = 1, 2
indicating states 1 and 2 respectively. Thus the equations relating change in volume to strain for
states 1 and 2 are as follows:

V1
V0

= ε+ 1

V2
V0

= εrr + εθθ + ε+ 1. (2)

The change in fiber density from state 1 to state 2 represents the fluorescence intensity due to the
rigid sphere in the fibrin matrix under uniform compresion:

ρ2
ρ1

=
1

1 + 1
1+ε(εrr + εθθ)

. (3)

Assuming small strains, expand the (1 + ε)−1 term and ignore terms of order ε2 and larger. This
gives

ρ2
ρ1

=
1

1 + εrr + εθθ
. (4)

Combining with Eq. 1 gives the scaling of matrix fiber density over distance,

ρ2
ρ1

=
1

1 + Cr−3
, (5)

where C is a constant. For intermediate values of r, the curves in Fig. 3d match the scaling of
Eq. 5 well, and as r gets large, the ratio ρ2/ρ1 approaches unity, also in agreement with Fig. 3d.
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Supplemental Figures
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Figure S1: The DVC technique successfully measures displacements and strains within a variety
of fibrin network densities. (a) Fluorescently labeled fibrin gels are made with fibrinogen concen-
trations of 2–6 mg/mL. For comparison, 1 µm fluorescent particles are encapsulated in fibrin gels
in separate experiments. The noise floor for displacement measurement is quantified with cell-free
control experiments. In these experiments, volume stacks of labeled fibrin matrix or fluorescent
particles in fibrin are collected over time at four different positions. At the end of the time lapse
85 µM blebbistatin is added to capture a reference time point. Matrix displacements are then com-
puted with DVC using this reference. (b) Typical errors due to noise in measuring displacements in
all three spatial directions (Ux, Uy, Uz) are ∼0.05–0.1 µm. (c) Normal strain components (εxx, εyy,
εzz) are computed from the displacements with a typical noise of ∼0.1–0.2% strain. Plots in (b) and
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(c) show mean ± standard deviation for four different positions within the matrix after correcting
for volumetric strains as described in the methods. (d) The accuracy of the DVC method is assessed
by applying computational translations of up to 5 µm to the image stacks of the fibrin matrix in
all three spatial directions (Ux, Uy, Uz) and then correlating using DVC. For all concentrations of
fibrinogen, the DVC accurately measures the applied displacements with typical errors of 1–5%.
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Figure S2: To consider the effect of fiber densification and degradation on the displacement mea-
surement, further tests of the DVC’s accuracy were conducted. (a) A 64×64×64 voxel subvolume
of native matrix was degraded by adding 12 cubic spots, each having a size of 9×9×9 voxels and an
intensity equal to the brightness of the 99th percentile of all voxels within the subvolume. These
12 spots had a volume equal to 3% of the subvolume. (b) Computational translations were applied
to the subvolume in all three spatial directions (Ux, Uy, Uz), and displacements were subsequently
measured with DVC. (c) The analysis was repeated using 12 holes (with zero fluorescence intensity),
representing degraded regions within the matrix. Results for both bright spots (densification, b)
and holes (degradation, c) show that the displacement measured with DVC matches the applied
displacement with error equal to the noise floor of the DVC (Supplemental Fig. S1b). (d) Max-
imal volume fraction of cell-induced fiber densification within a DVC subvolume is quantified by
measuring the volume of an isosurface of the matrix (see methods for more information). For 8
different cells, the maximal volume fraction averages 3.6%, which closely matches the 3% limit for
accuracy of the DVC.
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Figure S3: Cell-induced matrix alignment was characterized by the power spectral density (PSD),
as described in the methods. (a) The maximum intensity projection of a volume stack of matrix
fibers was used for analysis. Two regions (labeled 1 and 2) were selected, and the PSD was computed
for each region (plotted in panels b, and c, respectively). Fiber alignment is identified by bands in
the PSD; these bands are oriented at an angle of 90◦ to the orientation of fiber alignment. (d) Mean
values of the PSD were computed along lines drawn from the center to the edge of the PSD image
for various angles to the horizontal. Thus, the peak at an angle of –20◦ indicates fiber alignment
at an angle of 70◦ for region 1.
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Figure S4: Summary of the technique for computing displacements and strains. (a) 3D matrix
displacements are computed throughout the volume by using DVC. The DVC divides the entire
volume stack of matrix fibers into small subsets, each having a unique distribution of fluorescence
intensity. It then correlates each subset to a reference, stress-free condition to calculate displace-
ments in the matrix. (b) The strain tensor throughout the matrix is then computed by fitting a
3×3×3 grid of points around the point of interest to a 3D linear function and taking derivatives
in the x, y, and z directions. An example of this computation is shown for εxx, the normal strain
in the x direction. Red dots represent the 3×3×3 grid of points used for numerical differentiation.
(c) Areas of the cell applying normal and shearing forces to the matrix are computed from the
matrix strain tensor near the cell body. Normal and shearing components of the strain tensor are
computed as described in the methods, and relative areas of the cell exhibiting normal and shearing
forces are computed.
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