
Supplementary Methods: 

 

In Silico Pattern Generation: 

In silico patterns were generated using 7 different pattern generators: Undifferentiated, 

Differentiated, Inside-Out, Outside-In, Random, Globular, and Snaked. The differentiated 

patterns were created by assigning a differentiated state to all except 5% of the cells. The 

undifferentiated states were created by assigning an undifferentiated state to all but 5% of the 

cells. The 5 % margin was incorporated to allow for some of the error resulting from the network 

digitization algorithm. Outside-In patterns were generated using a radius parameter; all cells 

within the radius were set to undifferentiated while all cells outside were set to differentiated. 

Inside-Out patterns were generated using a radius parameter; all cells inside the radius were set 

to differentiated, while all cells outside were set to undifferentiated. Random patterns were 

generated by randomly setting a fraction of the cells to a differentiated state. Globular patterns 

were created using two parameters: a seed number, and expansion number. The seed number 

governed how many differentiated cell clusters were found initially, and the expansion parameter 

governed how many layers of nearest neighbors were converted into a differentiated state. For 

example, an expansion parameter of 2 would turn all cells within 2 network connections away to 

a differentiated state. Snaked parameters were generated using two parameters: the number of 

seeds, and the elongation of each seed. The number of seeds again denoted the number of initial 

starting locations that were differentiated. Each of these conditions was then extended to a length 

of n, by picking a random neighbor and converting its state to differentiated and repeating the 

process until the target length was reached.  

 

PCA: 

Electronic Supplementary Material (ESI) for Integrative Biology.
This journal is © The Royal Society of Chemistry 2015



Principal component analysis was performed using sklearn for the python programming 

language and used as a dimensional reduction technique for data visualization. The python 

package Matplotlib was used to plot all PCA plots, while the heatmaps displaying component 

information where created with custom written code using a combination of the python packages 

numpy and the PIL. All data points were mean centered and unit variance scaled as required by 

the PCA algorithm using the scale function from sklearn. The PCA algorithm relied on singular 

value decomposition, leading to multiple fitted estimators displaying the data with principal 

components reversed. Automatic dimension fitting was performed using the method of Thomas 

P. Minkas as needed(44).  

 

Network Reconstruction via Cell Profiler: 

Cell Profiler (http://www.cellprofiler.org/)(45) was used to analyze all of the 2D samples. For 

confocal analysis, images were imported, split into their component channels (i.e. red, blue, 

green) and cell nuclei were detected using a local Otsu thresholding approach to provide a binary 

mask. Clumped nuclei were resolved using the “intensity” module, followed with the 

“propagation function” within Cell Profiler, which led to extended objects that were termed 

“cells”. The green signal of each object (indicative of Oct4 expression) was measured and 

reported as the median and mean value. Additionally, the number of adjacent nearest neighbors 

was measured and the data was then exported to a python script that reconstructed the networks 

by using a KDTree implementation from scipy. Network images were generated using the 

python imaging library (PIL). Annotation was performed by thresholding the Oct4 intensity 

values. In the case of multiple EBs per image, the networks were split such that each individual 

network contained only one EB.  



 

 

Network Reconstruction in 3D: 

First confocal images were read by ImageJ, merged into a single RGB image and then saved as 

an image sequence. The image sequence was read using python and converted into a memory 

mapped array via the numpy package, which allows for analysis of large arrays that would 

normally exceed the amount of memory present in the computer’s RAM. Images were split into 

respective red, green, and blue components and then denoised using a Gaussian filter from 

scipy’s ndimage package. Initial thresholding was performed on the blue channel using a global 

Otsu approach from the python package skimage to identify grouped nuclei. Local maxima 

detection was performed to segment nuclei using the python package skimage and once detected, 

a merging step was performed to identify local maxima that were too close to each other, and 

these were merged into a single new local maxima point. The local maxima points were 

converted into seeds for nuclei detection and served as the subsequent nodes in the network. 

Connections were formed using a nearest neighbor approach using a KD Tree implementation 

from scipy, in which only neighbors within a certain distance (twice the cell radius) were 

connected to each other. The cells were then annotated by computing the average red and green 

values within radii around the points. A global threshold over all images was established for the 

red and green channels using an Otsu thresholding approach over all of the nodes. The networks 

were filtered to remove unconnected subnetworks, and further filtered using a nuclei quality 

(based on intensity and size of the nuclei) metric to produce the final annotated network.  

 

Classification: 



The following classification methods from the python package sklearn were used: SGD, NuSVC, 

SVC, linear SVC, Decision Tree, K Nearest Neighbors. In all cases, classifiers were trained 

using a test data set, followed by subsequent classification of a test set for metric evaluation. The 

data set was split into a test and training set using a K-Fold splitting strategy. Grid searches for 

the sets were also performed as outlined in the supplementary methods. This code set up the grid 

searches which were then subsequently run and returned the best trained classifier. These 

classifiers where then evaluated using the following criterion: recall, precision, f1_score, area 

under the curve, average precision, accuracy. Accuracy was computed as the fraction of 

completely accurate predictions. The average precision scores and the area under the curve were 

derived from the precision-recall curve, where the average precision is the average value over the 

curve, and the area was the integral of the entire curve. The precision score measured the ability 

of the classifier to not label a negative sample as positive. The recall score was the ability of the 

classifier to find all positive samples. The f-measure was a weighted harmonic mean between the 

precision and recall scores and was computed as F1 = 2* (precision*recall) / (precision + recall). 

 

Feature Elimination (variable trimming): 

Variables were eliminated from the data set by examining the variance present within each 

variable type. This was accomplished by examining the variable distributions on a boxplot 

(where each data point was an individual sample) and the clustering of variables shown by 

hierarchical clustering. This allowed variables which did not vary over samples to be identified 

and eliminated via the box plot test, and also to identify groups of variables which introduce 

confounding trends into the data set. Typically the box plot test was used to remove variables 

which did not change between samples (displaying a mean with an extremely tight standard 



deviation). In the case of the hierarchical clustering, if groups of variables segregated into larger 

groups and were separated by a normalized distance of >0.7 this test was used to determine 

which grouping of variables should be removed (typically a smaller isolated cluster of variables).  

 

Quantitative Comparisons between Multivariate Trajectories: 

Principal component analysis was performed to identify the most significant components of 

variation in the data. The data were then only compared along these axes, as utilizing the PC 

weights could account for the importance of individual measurements in comparing distances. 

Furthermore, a clustering algorithm (k-means, unsupervised) was performed on each set of data 

to determine if the subset of data trying to be fitted (typically a time point) could be split into 

smaller clusters of data to take care of multimodal data. This is an analogous method to creating 

a GMM (Gaussian mixture model) for each data subset. Individual peaks of the Gaussian were 

compared in a pointwise manner to determine the distance between two sets of data, resulting in 

a set of distance measurements which could be collected form a given set of pairwise data sets. 

Typically this was performed by aligning two data sets in time. Binning by time can be excluded 

to compare how closely one set of data matches another at each point in the series and was 

denoted as the absolute distance measurement.  

 

Modeling Local Interactions: 

Computational modeling was carried out using a previously established framework with some 

slight modifications. A KDTree implementation as provided in the scipy.spatial package for 

python was used for detecting and resolving collisions. The form of the rule functions was 

changed from previous work into a more classical activation and deactivation function: 



 

 𝑃(𝑥) =  𝛼                  Equation 1: Random Feedback 
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Where α denotes basal random differentiation,  ε denotes the number of neighbors, k1 and k 

denote the response levels of the sigmoidal functions, and norm_u and norm_d represent the 

normalized number of  neighbors in the undifferentiated and differentiated states respectively. 

These values were simulated over a variety of parameter ranges (Supplementary Table 1). These 

rules were considered to be satisfied if a randomly generated value was less than the calculated 

probability.   

 

Modelling Diffusion: 

Modelling of diffusive species was carried out using a simple Euler forward integration scheme 

for solution. Though faster solutions exist, the forward integration scheme is stable even when 

solving reaction diffusion equations with spatially heterogeneous consumption and production 

terms. The diffusion equation was solved using three separate convolution kernels for each 

independent direction: x, y and z. The solution was simulated according to Equation 5. 



𝐶(𝑡) = ∑ 𝐶𝑡−1 + 𝐷 ∗ 𝑑𝑡 ∗ (𝑙𝑥 + 𝑙𝑦 + 𝑙𝑧) + 𝑝 − 𝑞𝑡
0     Equation 5  

Where D is the diffusion coefficient, dt the time of integration, p the source term, and q the 

consumption term, and lx, ly, lz are the solutions to the 1-D diffusion kernel in x, y, and z 

respectively. In the case of the source and sink terms, both are assumed to be independent of the 

concentration, and both are calculated by summing the total contributions of all cells at a given 

location on the grid. The grid size (15 μm) was chosen so that at most 2-3 cells could share the 

space at the same time. The summation indicates that the solution is solved iteratively until either 

the upper time limit is met, or a steady-state convergence is reached. Steady-state was defined as 

no appreciable change (1E-5 of the concentration value) in the concentration gradient from a 

given time step to the next. All coefficients and constants were defined such that the final units 

of the concentration were in μM, with a spatial resolution in μm. The time step dt, was subjected 

to the constraint in Equation 6 for conditional stability of the integration scheme: 

𝑑𝑡 =  
.5

𝐷(
1

∆𝑥
+

1

∆𝑦
+

𝐷1

∆𝑧
)
         Equation 6 

Where x, y, z represent the spatial resolution of the grid on which the solution was solved. All 

convolution was carried out using scipy.ndimage convolve function, while a specific gradient 

class was created for handling diffusion of different soluble species. The rules for differentiation 

based on diffusion were implemented using classic inhibition equations. In the case of positive 

induction, where the soluble factor induced differentiation, the probability was defined as is 

shown in Equation 7. In the case of inhibition, where the soluble factor inhibited differentiation, 

Equation 8 was used. In the case of competing differentiation, both rules were applied, however 

the second soluble factor was only secreted by differentiated cell types.   



𝑃(𝑥) =  
1.0

𝑘1𝑛+ 𝑣1𝑛
          Equation 7 

𝑃(𝑥) = 1 − 
1.0

𝑘2𝑛+ 𝑣2𝑛          Equation 8 

In this context, v1 and v2 represent the values of the two concentrations at the point in space 

occupied by the cell,  k1 and k2 represent the set points at which the cells begin to respond, and 

coefficient  n denotes the width of the response distribution. Additionally, a counter was 

implemented to keep track of the time delays associated with each soluble signaling factor, 

thereby essentially representing a signal duration parameter that helped to modulate the response 

time of cell to given soluble signals.  

Parameter ranges: 

A range of parameters for the various different rules was investigated to provide a coherent 

sampling of the relevant parameter space. These parameter ranges are summarized for each rule 

in Supplementary Table 1. For the paracrine rules, evaluation of the consumption to production 

coefficients ratio (denoted p/q) was performed separately as a test before large scale simulation 

were run. Taken together all of the parameter sets took ~ 2500 hours of cumulative simulation 

time to run, which on a 64 core cluster was equivalent to approximately 380 hours of run time (~ 

15 days) and generated roughly 15 terabytes of data.  

Cell Culture: 

A Murine embryonic stem cells (D3) were expanded on 100-mm tissue culture plates coated with 

0.67% gelatin in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 15% fetal 

bovine serum(FBS) (Hyclone, Logan, UT),  2mM L-glutamine (Mediatech), 100 U/ml penicillin, 

100 ug/ml streptomyocin, and 0.25 ug/ml amphotericin (Mediatech), 1x MEM nonessential 

amino acid solution (Mediatech), 0.1 mM 2-mercaptoethanol (FisherChecmical, Fairlawn, NJ), 



and 10
3
 U/ml leukemia inhibitory factor (LIF) (Chemicon International, Temecula, CA). Cells 

were passaged every 2-3 days prior to reaching 70% confluence.  

EB Formation and Culture: 

To initiate ESC differentiation, a single cell solution was obtained via dissociation in a 0.05% 

trypsin / 0.53 mM EDTA solution. Embryoid bodies (EBs) were formed via forced aggregation 

of single cells into 400 µm diameter PDMS microwells (AggreWell), with approximately 1000 

cells per well. After 20 hours of formation, EBs were removed from the microwells and 

maintained in suspension on a rotary orbital shaker at 65 rpm, with approximately 1500 EBs per 

plate(26). EBs were fed via gravity-induced sedimentation and 90% of the media was exchanged 

every other for up to 7 days of differentiation. EBs were formed and cultured in the standard 

growth media without LIF.  

Immunostaining and Confocal Microscopy: 

EBs were fixed in 10% formalin for 45 minutes, permeabilized for 30 minutes in 1.0% TritonX-

100, re-fixed in formalin for 15 minutes, and blocked in blocking buffer (2% bovine serum 

albumin, 0.1% Tween-20 in PBS) for 3 hours. Samples were stained with a goat Oct4-antibody 

(Santa Cruz, 1:100 dilution) overnight at 4 °C. After three washes in blocking buffer, EBs were 

subsequently stained with a secondary donkey anti-goat Alexa Fluor 488 conjugated antibody 

(1:200 Santa Cruz) for 4 hours. Staining with Alexa Flour 546 Phalloidin (1:20 Molecular 

Probes) and Hoescht (1:100) was performed concurrently for 25 minutes. Samples were washed, 

resuspended in blocking buffer, and imaged using a Zeiss LSM 510 NLO Confocal Microscope. 

A single image was taken at the top of each EB and at a depth of 30 μm into the EB; for each 

timepoint, a minimum of 25 images were obtained.  



Cichlid maintenance and culture:  

Several species of East African Cichlids were kept as brooding populations in 40 gallon tanks, 

with two species per tank configurations, for a total of 30 to 40 individual fish. The male to 

female ratio was typically 1:4 up to 1:10, depending on species. Fishes were allowed to spawn 

naturally, then broods were taken from the female’s mouth approximately 24 hours post 

fertilization (hpf). A brood consisted of 20 to 80 eggs, depending on the species. Broods were 

grown in 150 mL flasks, in a mixture of tank water from which the mother lives, and methylene 

blue, to prevent fungal growth. A subset of individuals was taken from each brood at 36 hpf and 

at 4 hour intervals until 48 hpf  (denoted, 0, 4, and 8 hours in the text) to cover the entire duration 

of gastrulation. Embryos were fixed in 4% paraformaldehyde (PFA) at each time point of 

interest. 

 

Cichlid Embryo Staining and Confocal Imaging:  

After fixation, expression of dlx3b was visualized using whole mount in situ hybridization, using 

a modification of previously published methods(46). The gene was visualized using Fast Red 

(naphthol chromogen, Roche Diagnostics). After in situ hybridization, embryos were 

immunostained for pSmad 1,5,8 protein, using previously published protocols(47). Embryos 

were then bathed in Vectashield (Vector Labs) containing DAPI and placed in a specially built 

mold to hold embryos upright. Embryos were scanned using a Zeiss LSM 700-405 confocal 

microscope and images were processed using LSM 700 software and Image J. 

 

Path Finding Algorithms:  



Path finding algorithms were used to assess the likely flow of information through a system. 

Briefly, a set of waypoint nodes were chosen for the algorithms to pass through in a given order. 

For cichlid fish analysis, 3 waypoint nodes where chosen, a start node, an end node, and one in 

the middle of the gastrulation process. Simulations were run to find likely paths or flows of 

information by assigning a probability function to designate which node should be chosen next. 

In this case the PDF was directly related to the distance in the PCA reduced metric space. Thus, 

the resultant paths were reduced to the shortest distance representations in metric space 

constrained by passing through all waypoint nodes.  

 

 

Grid search parameters: 

NuSVC:  
nus = [1E-7, 1E-6, 1E-5, 1E-4, 1E-3, 1E-2, .1],  

params = [{'nu':nus, 'kernel': ['linear']}, 

                 {'nu':nus, 'gamma':np.logspace(-5,0,num=6), 'kernel':['rbf']}, 

                 {'nu':nus, 'gamma':np.logspace(-5,0,num=6), 'degree':np.arange(2,5), 'kernel':['poly']}, 

                 {'nu':nus, 'gamma':np.logspace(-5,0,num=6), 'kernel':['sigmoid']}] 

 classifier = NuSVC(probability = True)        

 gs = GridSearchCV(classifier, params) 

 

SVC: 
params = [{'C':np.logspace(-5,5,num=11), 'kernel': ['linear']}, 

                 {'C':np.logspace(-5,5,num=11), 'gamma':np.logspace(-5,0,num=6), 'kernel':['rbf']}, 

                 {'C':np.logspace(-5,5,num=11), 'gamma':np.logspace(-5,0,num=6), 'degree':np.arange(2,5), 'kernel':['poly']}, 

                {'C':np.logspace(-5,5,num=11), 'gamma':np.logspace(-5,0,num=6), 'kernel':['sigmoid']}] 

classifier = SVC(probability = True) 

gs = GridSearchCV(classifier, params) 

 

SGD: 
params = [{'alpha':np.logspace(-5,5,num=11), 'loss':['log']}, 
                 {'alpha':np.logspace(-5,5,num=11), 'loss':['modified_huber']}, 

                 {'alpha':np.logspace(-5,5,num=11), 'loss':['perceptron']}, 

                 {'alpha':np.logspace(-5,5,num=11), 'loss':['squared_hinge']}]        

classifier = SGDClassifier(shuffle = True)      

 gs = GridSearchCV(classifier, params) 

 

linear SVC: 
params = [{'C':np.logspace(-5,5,num=22)}]       

classifier = LinearSVC()  

gs = GridSearchCV(classifier, params) 

 

K Nearest Neighbors: 



params = [{'n_neighbors':np.arange(1,20)}]    

classifier = KNeighborsClassifier() 

gs = GridSearchCV(classifier, params) 

 

Decision Tree:  
params = [{'criterion':['entropy'], 'max_features':np.arange(1, len(ml))}, 
                 {'criterion':['gini'], 'max_features':np.arange(1, len(ml))}]  

 classifier = DecisionTreeClassifier() 

 gs = GridSearchCV(classifier, params) 
 

Metric Definitions: 

Binary Metrics (Oct4+, Oct4-): 

Oct4+_clust_# - the number of Oct4 + clusters (a cluster is defined as more than a single node) 

Oct4+_size_avg – the average radius of the Oct4+ clusters 

Oct4+_size_std – the standard deviation in the radius fo the Oct4+ clusters 

Oct4+_nd_cnt_avg – the average number of nodes of the Oct4+ clusters 

Oct4+_nd_cnt_std – the standard deviation in the number of nodes of the Oct4+ clusters 

Oct4+_rad_dist_avg – the average radial distance of the Oct4+ clusters  

Oct4+_rad_dist_std – the standard deviation of the radial distances of the Oct4+ clusters 

Oct4-_clust_# - the number of Oct4- clusters (a cluster is defined as more than a single node) 

Oct4-_size_avg – the average radius of the Oct4- clusters 

Oct4-_size_std – the standard deviation in the radius of the Oct4- clusters 

Oct4-_nd_cnt_avg – the average number of nodes of the Oct4- clusters 

Oct4-_nd_cnt_std – the standard deviation in the number of nodes of the Oct4- clusters 

Oct4-_rad_dist_avg – the average radial distance of the Oct4- clusters  

Oct4-_rad_dist_std – the standard deviation of the radial distances of the Oct4- clusters 

Total_obj_# - the total number of cells in the system 

Object_#_ Oct4+ – the total number of Oct4+ cells in the system 

Object_#_ Oct4- – the total number of Oct4- cells in the system 

Percent_diff – the total number of Oct4- cells / the total number of cells 

Agg_radius – the maximal radius (size) of the aggregate as measured from the center 

 

Multiclass Metrics (dlx3b+, pSmad+, blx3b+/pSmad+): 

dlx3b+_clust_# - the number of dlx3b+  clusters  

dlx3b+_size_avg – the average radius of the dlx3b+ clusters 

dlx3b+_size_std – the standard deviation in the radius of the dlx3b+ clusters 

dlx3b+_nd_cnt_avg – the average number of nodes of the dlx3b+ clusters 

dlx3b+_nd_cnt_std – the standard deviation in the number of nodes of the dlx3b+ clusters 

dlx3b+_rad_dist_avg – the average radial distance of the dlx3b+ clusters  

dlx3b+_rad_dist_std – the standard deviation of the radial distances of the dlx3b+ clusters 

dlx3b+_clust_circ_avg – the average circularity of the dlx3b+ clusters  

dlx3b+_clust_circ_std – the standard deviation of the circularities of the dlx3b+ clusters 

dlx3b+_ecc_avg – the average eccentricity of the dlx3b+ clusters  

dlx3b+_ecc_std – the standard deviation of the eccentricities of the dlx3b+ clusters 

pSmad+_clust_# - the number of pSmad+ clusters 

pSmad+_size_avg – the average radius of the pSmad+ clusters 

pSmad+_size_std – the standard deviation in the radius of the pSmad+ clusters 

pSmad+_nd_cnt_avg – the average number of nodes of the pSmad+ clusters 



pSmad+_nd_cnt_std – the standard deviation in the number of nodes of the pSmad+ clusters 

pSmad+_rad_dist_avg – the average radial distance of the pSmad+ clusters  

pSmad+_rad_dist_std – the standard deviation of the radial distances of the pSmad+ clusters 

pSmad+_clust_circ_avg – the average circularity of the pSmad+ clusters  

pSmad+_clust_circ_std – the standard deviation of the circularities of the pSmad+ clusters 

pSmad+_ecc_avg – the average eccentricity of the pSmad+ clusters  

pSmad+_ecc_std – the standard deviation of the eccentricities of the pSmad+ clusters 

pSmad+/dlx3b+_clust_# - the number of pSmad+/ dlx3b+ clusters 

pSmad+/dlx3b+_size_avg – the average radius of the pSmad+/ dlx3b+ clusters 

pSmad+/dlx3b+_size_std – the standard deviation in the radius of the pSmad+/ dlx3b+ clusters 

pSmad+/dlx3b+_nd_cnt_avg – the average number of nodes of the pSmad+/ dlx3b+ clusters 

pSmad+/dlx3b+_nd_cnt_std – the standard deviation in the number of nodes of the pSmad+/ 

dlx3b+ clusters 

pSmad+/dlx3b+_rad_dist_avg – the average radial distance of the pSmad+/ dlx3b+  clusters  

pSmad+/dlx3b+_rad_dist_std – the standard deviation of the radial distances of the pSmad+/ 

dlx3b+ clusters 

pSmad+/dlx3b+_clust_circ_avg – the average circularity of the pSmad+/ dlx3b+   clusters  

pSmad+/dlx3b+_clust_circ_std – the standard deviation of the circularities of the pSmad+/ 

dlx3b+   clusters 

pSmad+/dlx3b+_ecc_avg – the average eccentricity of the pSmad+/ dlx3b+   clusters  

pSmad+/dlx3b+_ecc_std – the standard deviation of the eccentricities of the pSmad+/ dlx3b+   

clusters 

pSmad+/dlx3b+_r_ratio – r_clust_nd_count_avg / y_clust_nd_count_avg  

pSmad+/dlx3b+_g_ratio - r_clust_nd_count_avg / y_clust_nd_count_avg 

Total_obj_# - the total number of cells in the system 

Object_#_pSmad+/dlx3b+ – the total number of pSmad+/dlx3b+ cells in the system 

Object_#_dlx3b+ – the total number of dlx3b+ cells in the system 

Object_#_ pSmad+ – the total number of pSmad+ cells in the system 

Agg_radius – the maximal radius (size) of the aggregate as measured from the center 

 

Binary Metrics (Mesenchymal, Epithelial): 

M_clust_# - the number of mesenchymal clusters  

M_size_avg – the average radius of the mesenchymal clusters 

M_size_std – the standard deviation in the radius of the mesenchymal clusters 

M_nd_cnt_avg – the average number of nodes of the mesenchymal clusters 

M_nd_cnt_std – the standard deviation in the number of nodes of the mesenchymal clusters 

M_rad_dist_avg – the average radial distance of the mesenchymal clusters  

M_rad_dist_std – the standard deviation of the radial distances of the mesenchymal clusters 

E_clust_# - the number of epithelial clusters 

E_size_avg – the average radius of the epithelial clusters 

E_size_std – the standard deviation in the radius of the epithelial clusters 

E_nd_cnt_avg – the average number of nodes of the epithelial clusters 

E_nd_cnt_std – the standard deviation in the number of nodes of the epithelial clusters 

E_rad_dist_avg – the average radial distance of the epithelial clusters  

E_rad_dist_std – the standard deviation of the radial distances of the epithelial clusters 

Total_obj_# - the total number of cells in the system 



Object_#_E – the total number of mesenchymal cells in the system 

Object_#_M – the total number of epithelial cells in the system 

Percent_diff – the total number of epithelial cells / the total number of cells 

Agg_radius – the maximal radius (size) of the aggregate as measured from the center 
 

Supplementary Figures: 

 

  



 

 
 

Figure S1 – Network metrics for characterizing spatial pattern formation and evolution. The 

whole network and sub network properties are outlined and annotated to give a visual 

representation of what each metric represents. In this example, U refers to undifferentiated Oct4+ 

cells, while D refers to more differentiated Oct4- cells.  

  



 

 
 

Figure S2 – A comparison of classification methods for correctly identifying patterns indicates 

that all classification schemes except stochastic gradient descent (SGD) recapitulate the true 

data. Colors indicate the different class of pattern assigned to the given data point.  

  



 

 
 

Figure S3 – Network digitization process for cellular aggregate images. The process of splitting 

images and detecting cells was performed in Cell Profiler, while the subsequent network 

reconstruction and annotation steps are performed using python. 

 

 

Figure S4 - Fidelity of network digitization process from experimental images (top row; Oct4 = 

green, DAPI = blue, phallodin = red) to reconstructed networks (bottom row; Oct4+ = teal, Oct4 

- = blue ). Scale bars = 100 μms.  



 

Figure S5 – 250 cell/aggregate pattern trajectory. (a) The differentiation trajectory where each 

point represents an individually analyzed network. The dashed regions denote which state the 



observation falls into. (b) Individual networks color-coded by pattern type. (c) Pattern 

distributions over the 5 day differentiation time course.  

 
 

Figure S6 – Investigation of paracrine consumption/production ratios on the overall reach of a 

soluble paracrine gradient. Representative transition trajectories for the 1:100 (a), 1:50 (b) and 

1:10 (c) consumption to production ratios. (d) The average cell length influenced by the 

paracrine gradient for the 1:100 (blue), 1:50 (green) and 1:10 (red) consumption to production 

ratios.  

 

 



 

Figure S7 – Principal component analysis (PCA) for picking axes of largest variance. First 5 

principal component axes together explained ~ 90% of the variance present in the data.  Red and 

blue indicate a positive or negative contribution respectively of the metric with the axes of 

variation.  

 



 
Figure S8 – Network digitization procedure for 3D confocal cichlid images.  A Gaussian 

smoothing filtered was applied to filter out noise in the image. Next the image was thresholded 

using a local Otsu method. Next local maxima were detected using a local maxima filter. A 

simple thresholding and watershedding segmentation approach is used to separate individual 

cells using the maxima points as seeds. Next the network is reconstructed using a KD-tree 

method to infer cell connections. Final networks were generated by filtering out small 

unconnected nuclei.  

  



 

 
Figure S9 – (a) Investigating clustering of metrics for metric elimination. The gray region 

highlights metrics that all clustered together and were related to the standard deviations in 

measured values. Data were normalized by each metric such that the max value along each 

metric was 1 (red), while the minimum value was 0 (blue). (b) Identification of informative 

features by examination of metric distributions. Red lines represent the means, while blue boxes 

represent the first quartile, blue dashed lines represent the second quartile, and green squares 

represent outliers. 

 

 

Supplementary Tables 

Supplementary Table 1: 

Rule Set Parameter Name Range 

Local 

Random 

α 0.001,0.0025, 0.005,0.0075, 0.01 

Local 

Negative 

Feedback 

α 

k1 

n1 

0.001, 0.005, 0.01 

0.1,0.3, 0.5, 0.7, 0.9 

10,50 

Local 

Positive 

α 

k1 

0.001, 0.005, 0.01 

0.1, 0.3, 0.5, 0.7, 0.9 



Feedback n1 10,50 

Local 

Competing 

Feedback 

α 

k1 

n1 

k2 

n2 

0.001, 0.005, 0.01 

0.1, 0.3, 0.6, 0.9 

10,50 

0.1, 0.3, 0.6, 0.9 

10,50 

Paracrine 

Positive 

α 

k1 

n1 

p/q 

0.001, 0.005 

0.006, .008, .01, .012, .014 

10, 50 

10, 50, 100 

Paracrine  

Negative 

α 

k1 

n1 

p/q 

0.001, 0.005 

0.006, .008, .01, .012, .014 

10, 50 

10, 50, 100 

Paracrine 

Competing 

α 

k1 

n1 

k2 

n2 

p/q 

0.001, 0.005 

0.006, .008, .01, .012, .014 

10 

.006, .008, .01, .012, .014 

10 

10, 50, 100 

 


