### ELECTRONIC SUPPLEMENTARY INFORMATION for

## Single molecular force across single integrins dictates cell spreading

Farhan Chowdhury, Isaac T. S. Li\*, Benjamin J. Leslie\*, Sultan Doğanay\*, Rishi Singh,

Xuefeng Wang, Jihye Seong, Sang-Hak Lee, Seongjin Park, Ning Wang<sup>†</sup>, Taekjip Ha<sup>†</sup>

\* Contributed equally

<sup>†</sup>Correspondence: T.H. (<u>tjha@illinois.edu</u>), N.W. (<u>nwangrw@illinois.edu</u>)

This PDF file includes additional

- Experimental Procedures [Pg. 2-3]
- Supplementary Figures [Pg. 4-6]
- References [Pg. 7]

#### **Experimental Procedures**

#### **Passivated surface preparation**

Glass coverslip surfaces were functionalized and passivated by mixing biotinylated PEG of different molecular weights (0.4kD, 5kD, 10kD, 20kD) with mPEG (5kD) molecules at a ratio of 1:5. The surface passivation technique is described elsewhere in details<sup>1</sup>. In short, cleaned glass coverslip surfaces were aminosilanized and the amines were reacted with PEG-N-hydroxysuccinimide (NHS) ester: mPEG-SVA (MW 5kD, Laysan Bio, Inc) and biotin-PEG (0.4kD, Thermo Fisher Scientific Inc.; and 5kD, 10kD, and 20kD, Laysan Bio, Inc). Passivated surfaces were incubated with NeutraAvidin (200  $\mu$ g/ml, Thermo Fisher Scientific Inc.) in PBS for 20 mins. The coverslips were washed by PBS twice and one time with dH<sub>2</sub>O and air dried. 3  $\mu$ l volume spots of 1  $\mu$ M RGD-TGTs of different tension tolerance were incubated on the surfaces. These spots were further incubated at 4° C for 30 minute and then washed by PBS to remove unbound TGTs. Thus, the TGT engineered surfaces were ready for cell adhesion assay.

#### Extended freely-jointed chain (xFJC) model of PEG

The force-extension curves and the corresponding stiffness were also calculated by the extended freely jointed chain model<sup>2</sup>.

$$L(F) = L_c(F) \left( \coth\left(\frac{FL_k}{k_B T}\right) - \frac{k_B T}{FL_k} \right) + \frac{N_s F}{K_s}$$

The number of monomer units  $N_s$  corresponding to PEGs with different molecular weights (0.4k, 5k, 10k, 20k) are 12, 146, 293 and 587. The Kuhn length  $L_k$  of PEG is 0.7 nm<sup>2</sup>. The contour

length  $L_c$  is calculated as the product of the number of monomer and Kuhn length. The segment elasticity  $K_s$  is 150 N/m/monomer<sup>2</sup>.

# Fabrication of Polyacrylamide substrates

Polyacrylamide gel substrates were prepared as described before<sup>3</sup>. The polyacrylamide gel substrates with elastic Young's modulus of 1.0 kPa (0.1% bis-acrylamide, 3% polyacrylamide) and 8 kPa (0.3% bis-acrylamide, 5% polyacrylamide) were used in this study<sup>4-6</sup>.

**Supplementary Figures** 



**Supplementary Figure 1.** Cell spreading area increases with increasing molecular tension tolerances. (**a**, **c**, **e**) Representative images of CHO-K1, HeLa, and MDA-MB-231 cells on 43 and 56 pN surfaces. (**b**, **d**, **f**) Projected cell area of CHO-K1, HeLa, and MDA-MB-231 cells

increases while CSI values decreases with increasing tension tolerances. For CHO-K1 cells, n=26 and 27 for 43 pN and 56 pN surfaces. For HeLa cells, n=32 and 36 for 43 pN and 56 pN surfaces. For MDA-MB-231 cells, n=41 and 47 for 43 pN and 56 pN surfaces. Data represents mean $\pm$  s.e.m. \*p< 0.001.



Supplementary Figure 2. Molecular tension tolerance dependent cell spreading in mouse embryonic fibroblasts (MEFs). (a) Representative images MEFs on 43 and 56 pN surfaces. (b-c) Projected cell area of MEFs increases while CSI values decreases with increasing tension tolerances (n=23 for both 43 pN and 56 pN surfaces). Data represent mean± s.e.m. \*p<0.001

## References

- 1. R. Roy, S. Hohng and T. Ha, *Nat Methods*, 2008, 5, 507-516.
- 2. F. Oesterhelt, M. Rief and H. E. Gaub, New J Phys, 1999, 1.
- 3. R. J. Pelham, Jr. and Y. Wang, *Proc Natl Acad Sci U S A*, 1997, 94, 13661-13665.
- T. Yeung, P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver and P. A. Janmey, *Cell Motil Cytoskeleton*, 2005, 60, 24-34.
- A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Griffin and D. Discher, *Biophys J*, 2004, 86, 617-628.
- 6. J. R. Tse and A. J. Engler, *Curr Protoc Cell Biol*, 2010, Chapter 10, Unit 10 16.