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S1 Probability density of V

Following the main text, T1 represents a random variable (r.v.) for the reaction time
of mRNA degradation, while T2 represents a r.v. for the reaction time of translation.
Let V (t) be a r.v. representing the number of translation reaction events from a single
transcript within time t. Then,

pV (v) =

∫ ∞
0

Prob{V (t) = v} fT1(t)dt

where fT1(t) is the density function of T1. Let T (v) be a r.v. representing a time to
complete v translation reaction events and fT (t; v) be its density function. Then,

Prob{V (t) = v} = Prob{V (t) ≥ v} − Prob{V (t) ≥ v + 1}
= Prob{T (v) < t} − Prob{T (v + 1) < t}

=

∫ t

0

fT (t′; v)dt′ −
∫ t

0

fT (t′; v + 1)dt′

where fT (t; v) can be given by

fT (t; v) =

∫ t

0

· · ·
∫ t

0

δ(t−
v∑

i=1

ti) fT2(t1) · · · fT2(tv) dt1 · · · dtv

where δ(·) is the Dirac delta function and fT2(t) is the density function of T2.

S2 Derivation of Fokker-Planck equation

For each copy of mRNA molecule synthesized via transcription, the probability that this
copy of mRNA leads to the production of v copies of X is pV (v). The propensity function
of the protein synthesis reaction to produce exactly v molecules of the protein following a
single transcription event becomes q(s) pV (v). Thus, our gene expression model describes
the kinetics of the synthesis reaction of v protein molecules from a single mRNA molecule
by q(s) pV (v) and the protein degradation by kdeg x. Let p(x, t | s) be the probability that
X(t) = x given that signal level (i.e., transcription factor level) is s. Then, the chemical
master equation [1] is given by

∂p(x, t | s)
∂t

=
∞∑
v=0

pV (v) [ q(s) p(x− v, t | s)− q(s) p(x, t | s)]

+ kdeg (x+ 1) p(x+ 1, t | s)− kdeg x p(x, t | s).
(S1)
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By making continuous approximation and resorting to the second-order Taylor expansion
[2, 3], we have

∂p(x, t | s)
∂t

= −
∑
v∈Z∗

pV (v) v
∂

∂x
[q(x, s) p(x, t | s)]

+
∑
v∈Z∗

pV (v) v
2 1

2

∂2

∂x2
[q(x, s) p(x, t | s)]

+
∂

∂x
[kdeg xp(x, t | s)] +

1

2

∂2

∂x2
[kdeg xp(x, t | s)] ,

which, as shown in the main text, can be simplified to the following Fokker-Planck equa-
tion:

∂p(x, t | s)
∂t

= − ∂

∂x
[A(x | s) p(x, t | s)] + 1

2

∂2

∂x2
[D(x | s) p(x, t | s)] (S2)

where the drift function A(x | s) = µ1 q(s) − kx and the diffusion function D(x | s) =
µ2 q(s) + kx.

S3 Simulation procedure

To test the accuracy of our analytical model, we performed simulations of the underly-
ing discrete-stochastic model governed by the chemical master equation (Eq. S1). The
stochastic simulation was based on the Gillespie stochastic simulation algorithm (SSA) [4],
which was implemented in R specifically for analysis of our models. To model the dynamic
of the protein burst size, an extended version of the standard SSA was used so that the
value of V is sampled from a given distribution (e.g., a truncated geometric distribution
and a negavite binominal distribution) each time a reaction event fires. To obtain the
distribution of X∞, 10,000 runs of simulation were performed for 5,000 minutes and the
copy number of protein X at the final time point was recorded for each simulation run.
In the simulation of the gene expression model with the regulated promoter, the dynamic
of the transcription factor S was modeled by sampling a value from a specific distribution
(i.e., a negavite binominal distribution for the results in Fig. 4) each time a reaction event
fires. Statistical analysis was made for each model setting based on the 10,000 samples of
X∞ from the simulation.

S4 Conditions for stable states and unstable states

In the stationary regime, we have

∂

∂x
{A(x | s)ps(x | s)−

1

2

∂

∂x
[D(x | s)ps(x | s)]} = 0.
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From the boundary condition ps(∞ | s) = 0 and p′s(∞ | s) = 0, we have

A(x | s)ps(x | s)−
1

2

∂

∂x
[D(x | s)ps(x | s)] = 0,

yielding

p′s(x | s) =
α(x | s)
D(x | s)

ps(x | s),

where α(x | s) = 2A(x | s)−D′(x | s). At the local extrema positions of p′s(x | s), then,
it is clear that α(x | s) = 0. At the stable state positions, ps(x | s) is a peak, so we have
p′s(xss | s) = 0 and p′′s(xss | s) < 0. At the unstable state positions, ps(x | s) is the bottom
of a valley, so we have p′s(xus | s) = 0 and p′′s(xus | s) > 0. By taking the derivative of
p′s(x | s), we can express the second derivative of ps(x | s) as

p′′s(x | s) = ps(x | s)
d

dx

α(x | s)
D(x | s)

+ p′s(x | s)
α(x | s)
D(x | s)

.

At the local extrema points, we have α(x | s) = 0, so at these points, the expression of
p′′s(x | s) is simplified to

p′′s(x | s) = ps(x | s)
[
α′(x | s)D(x | s)− α(x | s)D′(x | s)

D2(x | s)

]
= ps(x | s)

α′(x | s)
D(x | s)

.

Here, since ps(x | s) and D(x | s) are non-negative, the sign of p′′s(x | s) must agree with
the sign of α′(x | s). That is, in a stable state, we have α′(xss | s) < 0, while, in an unstable
state, we have α′(xss | s) > 0 Therefore, a stable state, xss, satisfies α(xss | s) = 0 and
α′(xss | s) < 0, while an unstable state, xus, satisfies α(xus | s) = 0 and α′(xus | s) > 0.

S5 Analysis of stability in a constitutive promoter

system

We examine α(x) = 2A(x)−D′(x) where the drift function A(x) = µ1 kprod − kdeg x and
the first derivative of the diffusion function D′(x) = kdeg. Since 2A(x) is a monotonically
decreasing function and D′(x) is a constant, they have only one intersection point if
2A(0) ≥ D′(0) and no intersection point, otherwise. In addition, the first derivative of
α(x) with respect to x is always negative, implying that this intersection point is a stable
state. This means that, in order for the stable protein level to be positive, we need to
have 2A(0) ≥ D′(0), that is, 2µ1 kprod > kdeg. Solving α(xss) = 0 for xss yields

xss = µ1
kprod
kdeg

− 1

2
.
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To derive the expression of stability width w, we approximate ps(x) around xss by the
following Gaussian function

f(x) = ps(xss) exp
[
−(x− xss)2/2w2

]
.

From this setup, it is clear that ps(xss) = f(xss) and p′s(xss) = f ′(xss) = 0. To find the
expression of w, we impose another condition: p′′s(xss) = f ′′(xss). The second derivative of
ps(x) at a stable state position is p′′s(xss) = ps(xss)α

′(xss)/D(xss), The second derivative
of f(x) with respect to x is f ′′(x) = −f(x)/w2 − f ′(x) (x − xss)/w2. Since f(xss) = 0,
we have f ′′(xss) = −f(xss)/w

2. From these, we obtain w =
√
−D(xss)/α′(xss). For the

constitutive promoter setting, thus, we can express the width w as

w =

√
1

2

kprod
kdeg

(µ2 + µ1)−
1

4
.

S6 Analysis of stability in feedback systems

S6.1 Shape of 2A(x) and D’(x)

For the feedback-based gene expression process, we have

2A(x) = 2µ1 q(x)− 2 kdeg x,

D′(x) = µ2 q
′(x) + kdeg.

Since A(0+) = µ1 kb and A(∞) = −∞, in the positive domain, 2A(x) must have an odd
number of zero-crossings (i.e., in the deterministic context). The first and the second
derivatives of 2A(x) are given by 2A′(x) = 2µ1 q

′(x) − 2 kdeg and 2A′′(x) = 2µ1 q
′′(x),

while the first and second derivatives ofD′(x) areD′′(x) = µ2 q
′′(x) andD′′′(x) = µ2 q

′′′(x),
respectively. The first three derivatives of q(x) are

q′(x) =
ν xn−1

Kd
n [(x/Kd)

n + 1]
2 ,

q′′(x) = ν
(n− 1) (x/Kd)

n − (n+ 1) (x/Kd)
2n

x2 [(x/Kd)
n + 1]

3 ,

q′′′(x) = ν

∑3
i=1 fi(n)(x/Kd)

i n

x3 [(x/Kd)
n + 1]

4

where ν = n (ka − kb), f1(n) = (n−2)(n−1), f2(n) = 4 (1− n2), and f3(n) = (n+2)(n+1).
If n > 1, then q′′(x) has a single positive root at x = xin where xin = Kd

n
√

(n− 1)/(n+ 1).
Thus, 2A(x) has an inflection point and D′(x) has a local extremum at x = xin when
n > 1.



6

The expression of q′(0+) and q′′(0+) depends on the value of n and they are given by

lim
x→0+

q′(x) =


∞ if n < 1

(ka − kb) /Kd if n = 1

0 if n > 1,

(S3)

lim
x→0+

q′′(x) =


−∞ if n < 1

−2 (ka − kb) /Kd
2 if n = 1

0 if n > 1.

(S4)

S6.2 Positive feedback systems

From these results, given that ka > kb (i.e., positive feedback systems), we can obtain
characteristics of the shape of 2A(x) and D′(x) as follows. In this setting, we have
q′(x) ≥ 0 for all x > 0. If n ≤ 1, then q′′(x) < 0 for all x > 0, indicating that 2A(x) is a
concave function, which approaches −∞ as x → ∞. On the other hand, if n > 1, then
q′′(x) has a single positive root at x = xin, and the curve of 2A(x) changes from convex
to concave at x = xin.

If n ≤ 1, then q′′(x) < 0 and q′′′(x) > 0 for all x > 0, making D′(x) a monotonically
decreasing, convex function, that starts from ∞ if n < 1 and µ2(ka − kb)/Kd + kdeg if
n = 1 and converges to kdeg as x → ∞. On the other hand, if n > 1, then D′(x) starts
from kdeg at x = 0 and has a local maximum at x = xin, which approaches kdeg as x→∞.

S6.3 Negative cooperative positive feedback case

In this setting, we have α(0) < 0 and α(∞) < 0. We also know that 2A(x) is a concave
function and D′(x) is a monotonically decreasing convex function (see Sections S5.1 and
S5.2). From these, we have two cases for the number of sign-changes in α(x) in the x > 0
domain:

Case (i): α(x) has two sign-changes. In this case, ps(x) has two local extrema. The
lower zero-crossing point is an unstable state, while the higher one is a stable state.

Case (ii): α(x) has no sign change. This implies that for all x > 0, D′(x) ≥ 2A(x).
In this case, ps(x) has no local extremum, indicating that ps(x) is a monotonically
decreasing function.

These cases correspond to the cases presented in the main text.
By taking the variance of the burst size as small as possible (i.e., µ2 ≈ µ1

2), we may
be able to control D′(x) so that it transitions from infinity to kdeg rapidly in a wide range
of parameter conditions. This guarantees the condition for Case (i), but the position of
the unstable state becomes very close to zero since the slopes of 2A(x) and D′(x) are
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initially ∞ and −∞, respectively, making it unnoticeable (Fig. 5a). Thus, even though
there is a point of attraction at x = 0, this attractor is not noticeable since the threshold
is very close to 0 under this condition. Another analytical observation is that, if D′(x)
with the lowest possible value of µ2 (i.e., µ1

2) results in Case (ii), then any changes in µ2

would result in Case (ii). Suppose we observe Case (i) (i.e., the points of attraction at
0 and a high protein expression level separated by the threshold) in a positive feedback
gene expression system with a transcription factor of negative cooperativity. Then, if we
are to increase the variance of the burst size by increasing µ2, the distance between the
threshold and the higher expression state state becomes shorter because an increase in
µ2 results in increase the threshold point and decrease the level of the higher expression
state state (Fig. 5a). As we further increase the variance of the burst size, eventually,
D′(x) becomes so large that it can no longer intersect with 2A(x), leaving the point of
attraction only at 0.

S6.4 Non-cooperative positive feedback case

In this setting, 2A(x) is a concave function, and D′(x) is a monotonically decreasing
convex function (see Sections S5.1 and S5.2). The sign of α(0), however, now becomes
dependent on µ2, implying that the number of stable states depends on the variance of the
burst size. Since α(∞) < 0, α(x) has a single zero-crossing only if α(0) > 0, otherwise,
it has an even number of zero-crossings (Fig. 5b). D′(0) is a linear function of µ2 when
n = 1 (see Section S5.1). From this, the sufficient condition for α(x) to have a single
zero-crossing based on the range of the second moment of the burst size becomes

µ2 < Kd (2µ1 kb − kdeg) / (ka − kb) . (S5)

When this condition is satisfied, the sign changes from positive to negative, indicating that
the protein level has a positive stable state. Condition S5 also implies that 2µ1 kb > kdeg
is a necessary condition for the single zero-crossing. Since the variance of the burst size
must be non-negative, we can also constrain the validity range of µ1 to have a stable
protein level to be

kdeg
2 kb

< µ1 <

√
kb

2Kd
2 − (ka − kb) kdegKd + kbKd

ka − kb
(S6)

In contrast, if α(0) ≤ 0, similar to the negatively cooperative setting, α(x) has two or
zero sign-changes, implying that ps(x) has either two or zero local extrema. This also
shows that, if the value of µ1 does not satisfy Condition S6, ps(x) has again two local
extrema, that is, the protein copy number has two points of attraction at 0 and higher
protein expression level separated by a threshold.
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S6.5 Positive cooperative positive feedback case

In this setting, A′′(x) is zero when x = xin where xin = Kd
n
√

(n− 1)/(n+ 1) (see Section
S6.1). Thus, 2A(x) is locally convex up to xin, while it is locally concave from xin (see
Sections S6.1 and S6.2). This means that 2A(x) has two local extrema: a local minimum
at x = x1 and a local maximum at x = x2, which are separated by xin. In the deterministic
context, the process is bistable, only if 2A(x1) < 0 and 2A(x2) > 0, that is, only if the
value of the drift function at the local minimum point and the local maximum point
is negative and positive, respectively. In the stochastic context, however, the stability
of the system can be widely different because of nonlinear D(x). Indeed, given that
2µ1 kb < kdeg, α(x) guarantees to have an even number of zero-crossings whereas 2A(x)
has an odd number of them. The manipulation of the burst size variance can control the
number of positive stable states. By tuning µ2, we can alter the amplitude of the local
maximum of D′(x) proportionally, which can change the number of intersection between
2A(x) and D′(x). This predicts that changes in the burst size distribution can give rise to
a multimodal protein distribution. This point is illustrated in Fig. 5c, in which the system
exhibits bistability when µ2 has the lowest possible value (i.e., µ2 = 400 when µ1 = 20).
As the value of µ2 is increased to the level close to that of the geometric random variable
(i.e., µ2 = 400), the amplitude of the peak of D′(x) becomes so high that two intersection
points disappear, leading to a monostable state with the lower expression stable state.

S6.6 Negative feedback systems

Given that ka = 0 (i.e., negative feedback systems), we can obtain characteristics of the
shape of 2A(x) and D′(x) as follows. In this setting, we have q′(x) ≤ 0 for all x > 0. If
n ≤ 1, then q′′(x) > 0 for all x > 0, indicating that 2A(x) is a monotonically decreasing
convex function, which approaches −∞ as x→∞. If n ≤ 1, then D′(x) is a monotonically
increasing function with D′(0) < 2A(0), implying that there is only one intersection point
between 2A(x) and D′(x). Thus, there is only one intersection point between 2A(x) and
D′(x), indicating that the protein expression process has one positive stable state.

On the other hand, if n > 1, then q′′(x) has a single positive root at x = xin, and
2A(x) is a monotonically decreasing function that changes from concave to convex at
x = xin. Thus, D′(x) starts from kdeg at x = 0 and has a local minimum at x = xin,
which approaches kdeg as x→∞. In any case, thus, 2A(x) is a monotonically decreasing
convex function and D′(x) is a monotonically increasing function in the range x ∈ [xin,∞)
for all n. In this setting, 2A(x) has an inflection point and D′(x) has a local minimum
when x = xin where xin = Kd

n
√

(n− 1)/(n+ 1). Since the maximum value of D′(x) is
kdeg, if the value of 2A(x) at x = xin is found to be greater than the protein degradation
rate constant, then we can guarantee that this gene expression process has a high protein
expression level with any setting of the protein burst size distribution.
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