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Figure S1. Simulations demonstrating differences in model selection and parameter 

estimation of Bayesian HMM in SAPHIRE versus GMM under varying degrees of state 

discriminability.  

(A) Two bivariate Gaussian states (blue and pink) with equal variances along x  and y  (left panel) 

were used to create temporal trajectories with a single state transition. In practice, the states are 

unknown and must be inferred from a time series cellular trajectory of coordinates (right panel). 

State circles represent one and two true standard deviations from the mean (circle centers) and 

points are random samples drawn from the states. Simulated trajectories of different lengths 

(different number of samples drawn from the states) and varying resolvability of the states (how 

well separated the states are, /δµ σ ) are shown. (B) Comparison between Bayesian HMM and 

GMM ability to infer the correct 2-state model (versus a 1-state, or 3-state model) as a function of 

how well separated the two states are ( /δµ σ ) for different trajectory lengths. Here, δµ  is the 

Euclidean distance between the means (centers) of the two states and σ  is the standard 

deviation of each state, set to be the same for the two states in the simulations. Error bars 

represent +/- standard error of the mean for 20 state-drawn samples for each /δµ σ . Inclusion 

of temporal information in the true 2-state trajectories enables the Bayesian HMM in SAPHIRE to 

infer the correct 2-state model with higher probability (purple curve) compared to GMM with 

expectation maximization (green curve), which does not take temporal information of the 

trajectory into account. For both the Bayesian HMM and GMM inference methods, longer 

trajectories and larger separation of underlying states improved inference of the correct 2-state 

model. (C) The percent error in inferred state means for the Bayesian HMM and GMM. Cumulative 

percent error in the state means was calculated as ( ), , ,y ,y100 | | | |
a i a is x s x s s

s

µ µ µ µ δµ− + −∑  where 

a
s  is the actual (true) state (two states in these simulations), | |⋅ denotes absolute value, and i

s  

is the inferred state closest to the true state a
s , for all 2-state inferred models, regardless of 

whether they are the most probable model or not.  
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Figure S2 



5 
 

Figure S2. Gaussian mixture modeling (GMM) with full covariance matrix specification 

leads to state under-fitting and undesirable grouping of diverse morphologies into the 

same state.  

Three examples of individual cell shape trajectories from the expanded drug panel imaging 

experiment modelled with SAPHIRE to derive annotated underlying shape state sequences from 

PCA shape-space trajectories (a). The same cell shapes over time are classified into groups using 

GMM with a diagonal, equal-variance constraint for the covariance matrix (b) or full covariance 

matrix (c), with BIC used for the GMMs to find the most probable shape state model for each cell 

trajectory individually, independent of other cells. The full covariance matrix GMM lumps cell with 

heterogeneous morphologies (e.g., rounder, elongated, branched) into similar groups, showing 

that Gaussian states with diagonal, equal variances (circles as opposed to ellipses) better resolve 

and describe the underlying morphological states of MDA-MB-231 cells in shape-space. 
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Figure S3 
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Figure S3. Probabilistic time series modeling using SAPHIRE better resolves cell shape 

states compared to GMM when cells progressively explore shape-space over time.  

Three PCA shape-space cell trajectories are shown, with annotation with the most likely shape 

state model and state sequence using SAPHIRE (a), and GMM using diagonal, equal-variance 

constraint on the covariance matrix (b) or full covariance matrix (c) using BIC to select the most 

likely model for the GMMs. The cells shown generally move through shape-space continuously in 

particular directions over time (e.g., left to right for the first cell in the upper panel), with SAPHIRE 

able to capture these states and state transitions, whereas the GMM is unable to resolve them. 

This is consistent with numerical simulations (Fig. S1) showing that time series information taken 

into account by SAPHIRE, which is neglected by the GMM, is better able to resolve, model, and 

annotate the underlying temporal shape state behavior of individual cells. The inability to properly 

resolve and capture shape states by GMM leads to under-fitting of the number of states and 

improper grouping of morphologically dissimilar shapes into the same state. 
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Figure S4 
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Figure S4. Examples of cells with similar SAPHIRE and GMM shape state annotations.  

Cell trajectories in shape-space were annotated with the most likely shape state model and state 

sequence using Bayesian HMM (a), and GMM using diagonal, equal-variance constraint on the 

covariance matrix (b) or full covariance matrix (c). For the GMMs, the BIC was used to select the 

most likely state model. When a cell moves progressively through shape-space over time and 

resides in well-separated shape-space regions (early time in black and later time in gray/white in 

left panels), Bayesian HMM and GMM categorize morphologies using the same number of states, 

with state transitions (blue to red) found to occur at similar points in time. 
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Figure S5 

 

Figure S5. Effects of treatments on the number of morphological states explored by cells. 

Percentage of individual cells with given numbers of explored shape states as inferred from the 

SAPHIRE probabilistic models across different treatment conditions for the two imaging 

experiments. Modeling was applied separately for each temporal shape-space trajectory to infer 

the a priori unknown number of hidden shape states explored by each cell. 
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Figure S6 

 

Figure S6. Phenotypic comparisons of an expanded panel of drugs that target 

actomyosin-regulatory proteins using model-annotated profiles of cell shape dynamics. 

(A) Effects of the expanded panel of drugs targeting various molecular species involved in 

regulating actomyosin dynamics on model-inferred cellular shape state locations in polar shape-

space (as in Fig. 5B). (B) Effects of the expanded panel of drugs on cellular state transitions in 

shape-space (as in Fig. 5C).  
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Table S1  

 

List and descriptions of image-derived cell shape features  

 

Feature # Feature Name Feature description 

1 Area Number of pixels in the cell region. 

2 Perimeter Length of the cell region’s boundary. 

3 
Equivalent 

Diameter 
The diameter of a circle that has the same area as in the cell region. 

4 
Major Axis 

Length 

Length of major axis of an ellipse that has the same normalized second 

central moments as the cell region. 

5 
Minor Axis 

Length 

Length of the minor axis of an ellipse that has the same normalized 

second central moments as the cell region. 

6 Eccentricity 
The eccentricity of an ellipse that has the same second moments as the 

cell region. 

7 Solidity 
The ratio of the area of the cell region to the area of cell region’s convex 

hull. 

8 Extent 
The ratio of the area of the cell region to the area of cell region’s 

bounding box. 

9 Convex Area The area of the convex hull of the cell region. 

10 Axis Ratio 
The ratio of the major axis length to the minor axis length of the cell 

region. 

11 Circularity For the cell region, computed as: (4*π*Perimeter) / (Area2) 

12 Waviness 
The ratio of the perimeter of the cell region’s convex hull to the perimeter 

of the cell region. 

13 
Geodesic 

Diameter 

The length of the longest geodesic path between all pairs of points on 

the boundary of the cell region. A geodesic path is the shortest path that 

connects two points on the cell region boundary that cannot traverse 

outside of the cell region.  

14 
Convex 

Perimeter 
Length of the cell region’s convex hull’s boundary. 

15 Feret Max 

The maximum of the Feret lengths of the cell region over 180 directions 

sampled uniformly 0–360 degrees. Feret length is the measure of the 

cell region’s size (length) along a specified direction, as would be 

measured with calipers.  

16 Feret Min 
The minimum of the Feret lengths of the cell region over 180 directions 

sampled uniformly 0–360 degrees. 

17 Feret Mean 
The mean of the Feret lengths of the cell region over 180 directions 

sampled uniformly 0–360 degrees. 

18 Feret CV 

The coefficient of variation (standard deviation divided by the mean) of 

Feret lengths of the cell region from 180 directions sampled uniformly 

0–360 degrees. 
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Video S1. Segmented and tracked breast cancer cells following DMSO control treatment.  

MDA-MB-231 cells stably expressing LifeAct-eGFP (green) actin reporter and Histone 2B-

mCherry (pink) nuclear reporter were imaged for approximately 18 hours at 8-minute time 

intervals following treatment with bolus 0.1% v/v DMSO in growth media. Image acquisition began 

approximately 45 minutes post-treatment. Imaging was performed using time-lapse 

epifluorescence microscopy with a 10X/0.3NA air objective on a Nikon Eclipse Ti microscope 

incubated at 37°C. The video shows colored cell outlines corresponding to cell body masks along 

with temporal evolution of nuclear tracks (purple lines) using automated image processing prior 

to quality control/phenotype labeling with the SAPHIRE GUI tool (see Materials and Methods of 

the main text). Scale bar, 40µm.  

 

Video S2. Segmented and tracked breast cancer cells following myosin II inhibition. 

MDA-MB-231 cells stably expressing LifeAct-eGFP (green) actin reporter and Histone 2B-

mCherry (pink) nuclear reporter following treatment with bolus 10µM Blebbistatin (myosin II 

inhibitor) in growth media. Image acquisition, processing, and video details are identical to those 

of Video S1. Scale bar, 40µm.  

 

Video S3. Segmented and tracked breast cancer cells following MLCK inhibition.  

MDA-MB-231 cells stably expressing LifeAct-eGFP (green) actin reporter and Histone 2B-

mCherry (pink) nuclear reporter following treatment with bolus 10µM ML-7 (MLCK inhibitor) in 

growth media. Image acquisition, processing, and video details are identical to those of Video S1. 

Scale bar, 40µm.  

 


