Supplemental Methods

Construct design and transgenic fly line creation

Reconstituted enhancers were designed using footprinted binding sites from RedFly¹ separated by spacer sequences generated by SiteOut². We screened against sites for *bicoid*, *hunchback*, *zelda*, *Krüppel*, *giant*, *caudal*, *tailless*, *Dichaete*, *Stat92E*, *knirps*, and *nubbin*. Enhancer sequences were synthesized commercially and cloned into the pBΦY vector between the NotI and BgIII restriction sites using Gibson assembly³. The pBΦY vector contains the *even-skipped* basal promoter driving *lacZ*, as well as *Amp*^R and *mini-white* cassettes and an attB site for sitespecific genome integration using the PhiC31 system ^{4,5}. Constructs were injected into *w*¹¹⁸ flies containing the attP2 integration site using commercial services provided by BestGene. Successful transformants were screened for the presence of *mini-white* and homozygosed.

In situ hybridization and imaging

In situ hybridization was performed as previously described ⁶. Briefly, embryos were collected for 0-4 hours at 25°C and fixed in heptane and 5% paraformaldehyde for 25 minutes. We then incubated the embryos for 2 days with digoxigenin (DIG)-labeled probes for *fushi tarazu* (*ftz*) and dinitrophenol (DNP)-labeled probes for *lacZ* and *huckebein* (*hkb*). *hkb* is expressed in nuclei at the poles of the blastoderm embryo, and *hkb* expression is used as a co-stain to normalize expression levels between different transgenic lines ⁷. Probes were then detected following sequential incubation with commercial anti-DIG or anti-DNP antibodies conjugated to horseradish peroxidase from PerkinElmer, as well as a color reaction with coumarin-tyramide or Cy3-tyramide, respectively. Nuclei were labeled using SYTOX Green from Life Technologies, and embryos were mounted in DePex from Electron Microscopy Sciences. Stage 5 embryos were sorted into one of six time classes using the extent of membrane invagination as a morphological marker. Data presented in the main text was taken from the third cohort (9-25% membrane invagination). Three-dimensional images of individual embryos were then obtained using two-photon laser scanning microscopy. Data from embryos that did not contain a hkb co-stain is also available (see Supplemental Data below).

Image processing and analysis

Image stacks from individual embryos were converted into pointcloud files containing the xyz coordinates and expression levels of *ftz* or *lacZ/hkb* for each nucleus ⁶. Individual pointclouds were averaged together into a gene expression atlas using the software described in ⁸. Normalized *lacZ* levels were calculated for individual embryos using the *hkb* co-staining method ⁷. Line traces were plotted using the extractpattern function contained in the PointCloud toolbox (<u>http://bdtnp.lbl.gov/Fly-Net/bioimaging.jsp?w=analysis</u>) which calculates the mean expression level in 100 bins along the anterior-posterior axis for 16 strips around the circumference of the embryo. We used the average of the 4th and 5th strip for our analysis.

Binding site predictions

Binding sites for *caudal* were predicted using a position weight matrix generated by bacterial 1-hybrid methods ⁹ and the PATSER software using a p-value cutoff of 0.01 ¹⁰. Binding sites were visualized using the inSite software (<u>http://www.cs.utah.edu/~miriah/insite/</u>).

Enhancer Sequences

The following sequences correspond to the wild-type and reconstituted versions of *eve2* that were assayed in reporter constructs. Lowercase letters indicate wild-type sequence, while uppercase letters indicate designed spacer sequences. One base pair in a footprinted *bicoid* site was altered in both reconstituted constructs; this base pair is indicated in bold.

eve2

reconstituted eve2 – spacer set 1

ACTGGACAGTttacccggtacCCGACTGCGTTACTATGGCGACTAtaactgggacaCACATCAAACAC CATctggtttCACGGTCGATACTAAGTgttaatccgttAGATGATGgcgagattattagtcaattgcagttgcTTGAG ATCTTTTAATTCTGTTGAATGGGATCCTAAACgactttattgcagcatcttgaacaatcgtcgcagtttggtaacac gctCATTACTTAGACGCACCagacggaatcgagggaccctggactataatcgcTCCGAATTaccgggttgcGGT ACGTTTCTCATTCTGTGACCGGAGGCCTATGTCTGGTATCATGTAGGAgtttgtttgtttgctgggattag ccaagggcttgaAGATGGGtccaatcccgatccctagcccgatcccaatcccaatcccatccctTATTTACTTAGACTg aaagtcataaaaaccataataTCTTTG**A**cgaagggattaggCCTAACTACA

reconstituted eve2 - spacer set 2

ACTCGTATACttacccggtacAAACTGTGTTGGGGGATTTCTCGTAtaactgggacaGGAAACGACGTA CAGctggtttGACAATGTAAGATAAATgttaatccgttACAACTCCgcgagattattagtcaattgcagttgcGTGCA TGTTCACTCGCTGTTTATCTATACGAATAGAAgactttattgcagcatcttgaacaatcgtcgcagtttggtaacac gctAGGGGTTGTGCTGTACTagacggaatcgagggaccctggactataatcgcTAGTCAATaccgggttgcTGA GCGAAATACACGTTGTCGTCAGTACTGATTTGTACTAGGCATATGCTCgtttgtttgtttgctgggattag ccaagggcttgaGTGTTGAtccaatcccgatccctagcccgatcccaatcccaatcccaatccctGTTTAGCAGCGAAG gaaagtcataaaaacacataataGCTAGT**A**cgaagggattaggCATACTACAC

Supplemental Data

Cellular resolution expression data from wild-type and reconstituted *eve2* enhancer reporter constructs is available at figshare.com:

https://figshare.com/articles/Cellular_resolution_data_from_wild_type_and_reconstituted_eve_st ripe_2_enhancer_reporter_constructs/2948377

References

- Gallo, S. M., Gerrard, D. T., Miner, D., Simich, M., Des Soye, B., Bergman, C. M. & Halfon, M. S. REDfly v3. 0: toward a comprehensive database of transcriptional regulatory elements in Drosophila. *Nucleic Acids Res.* **39**, D118–D123 (2011).
- 2. Estrada, J., Ruiz-Herrero, T., Scholes, C., Wunderlich, Z. & DePace, A. *SiteOut: an online tool to design binding site-free DNA sequences*. (2015). doi:10.1101/029645
- 3. Gibson, D. G. Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. *Nucleic Acids Res.* **37**, 6984–6990 (2009).
- 4. Hare, E. E., Peterson, B. K., Iyer, V. N., Meier, R. & Eisen, M. B. Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation. *PLoS Genet.* **4**, e1000106 (2008).
- 5. Groth, A. C., Fish, M., Nusse, R. & Calos, M. P. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. *Genetics* **166**, 1775–1782 (2004).
- Luengo Hendriks, C. L., Keränen, S. V. E., Fowlkes, C. C., Simirenko, L., Weber, G. H., DePace, A. H., Henriquez, C., Kaszuba, D. W., Hamann, B., Eisen, M. B., Malik, J., Sudar, D., Biggin, M. D. & Knowles, D. W. Three-dimensional morphology and gene expression in the Drosophila blastoderm at cellular resolution I: data acquisition pipeline. *Genome Biol.* 7, R123 (2006).
- 7. Wunderlich, Z., Bragdon, M. D. & DePace, A. H. Comparing mRNA levels using in situ hybridization of a target gene and co-stain. *Methods* **68**, 233–241 (2014).
- Fowlkes, C. C., Hendriks, C. L. L., Keränen, S. V. E., Weber, G. H., Rübel, O., Huang, M.-Y., Chatoor, S., DePace, A. H., Simirenko, L., Henriquez, C., Beaton, A., Weiszmann, R., Celniker, S., Hamann, B., Knowles, D. W., Biggin, M. D., Eisen, M. B. & Malik, J. A quantitative spatiotemporal atlas of gene expression in the Drosophila blastoderm. *Cell* **133**, 364–374 (2008).
- 9. Noyes, M. B., Meng, X., Wakabayashi, A., Sinha, S., Brodsky, M. H. & Wolfe, S. A. A systematic characterization of factors that regulate Drosophila segmentation via a bacterial one-hybrid system. *Nucleic Acids Res.* **36**, 2547–2560 (2008).
- 10. Hertz, G. Z. & Stormo, G. D. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. *Bioinformatics* **15**, 563–577 (1999).