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Appendix 8. Practical calculation of critical levels: Examples. 
 

Here, we briefly consider four examples of LA-ICPMS background measurements; in each case, the goal is to 
estimate the critical level. The first example describes a hypothetical, though practically important situation when 
the whole measurement yields zero counts. The remaining three examples are based on real background meas-
urements described in Electronic Appendix 1. In all cases, the nominal level of false positive errors is set to 5%. 
 
Example (i); input: Nb=Ib=0, tb=ts=1 s. Each of the sweeps constituting the background measurement returns zero 
counts (per second). Standard deviation estimates s(Nb) and s(Ib) according to eqn (28,30-32) are all equal to zero 
(in the absence of empirical manipulations with the background). Lc will be estimated using four decision rules: 
 
(a) for the sample signal to be detected, the mid-p adjusted version of the binomial rule, eqn 69, requires at least 4 
counts to be registered during the signal measurement, provided tb=ts: 
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At ts=1 s, Lc=3/1-0/1=3 cps; detection occurs when Is net=Is-Ib>Lc, i.e., when Is net=4/1-0/1=4 cps. 
 
(b) rule based on the square root transform, d=0.4, eqn (65,90), as recommended in the main text:  
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(c) √2Nb rule, eqn (63,72): Lc = (Is ! Ib )c =1.645 0 1
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(d) √2Nb rule empirically corrected for an ‘empty’ background by adding one count to one of the sweep readings 
constituting the background measurement, eqn (64,73): 

assuming the ordinary Poisson distribution, eqn (32): s(Ib ) =
1
1
=1 cps

 
 

assuming any distribution of uncorrelated sweep readings (eqn 31): 

s(Ib ) =
(100!1)2 + 99(0!1)2

100*99
=1 cps , number of sweeps arbitrarily set to 100 (10 ms dwell time); 

s(Ib ) =
(50!1)2 + 49(0!1)2

50*49
=1 cps , number of sweeps arbitrarily set to 50 (20 ms dwell time), etc.  
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Conclusions. The highest Lc value was returned by the mid-p adjusted version of the binomial rule. It amounts to 
3 cps, i.e., 3 counts in the signal are not yet detected, while 4 counts are detected. From the size modelling for this 
rule, we know that it can be conservative (Nb limiting to zero) or robust (Nb > 4 , tb=ts). Since the probability to 
obtain a zero background estimate at Nb > 4  is small, it can be safely concluded that the mid-p adjusted version 
of the binomial rule returned a conservative decision (which would become even more conservative when using 
the canonical formulation of this rule, see section 2.3 of the main text). Using the square root transform (d=0.4) 
returns an Lc value of 2.825 cps: 3 counts in the signal are already detected. From the size modelling for this rule, 
we know that it can be conservative ( Nb limiting to zero) or robust ( Nb >1.1 ). As the mean background count 
number is unknown, we cannot provide more details. Still, we are sure that the liberal decision is excluded: if we 
repeat our paired analysis many times, the rate of false detections will be lower than the declared level of 5%, or 
close to this level. Using the √2Nb decision rule in its original formulation, we have to accept that the rate of false 
detections will be much higher than declared, although an Lc value of zero returned by this rule can, at first 
glance, look attractive: any positive sample signal is detected. Empirically correcting this rule for an ‘empty’ 
background partly repairs the situation, provided the background estimate is happened to contain zero counts. At 
Nb>0, liberal detection decisions are taken, as no correction is applied; the overall behaviour of this decision rule 
remains liberal. Even if one count is added to any outcome of the background measurement, including the non-
zero outcomes, the √2 rule continuous to behave liberally (see Ref. 5 from the main text).  
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Example (ii); input: Nb=3 counts, tb=1.8 s (90 sweeps x 20 ms dwell time per sweep), tb/ts=3. The corresponding 
statistics can be found in Table 1 from Electronic Appendix 1, see time-resolved data for 93Nb. s(Nb) and s(Ib) are 
estimated as follows: 
 
assuming the ordinary Poisson model, eqn (30,32):  
Nb = 3 counts; s(Nb ) = 3 =1.732 counts  

Ib =
3
1.8

=1.667 cps; s(Ib ) =
1.667
1.8

= 0.962 cps
  

assuming any distribution of uncorrelated sweep readings (eqn 28,31): 

Nb = 3 counts; Nsw = 3 / 90 = 0.033 counts; s(Nb ) =
90
89

3(1! 0.033)2 +87(0! 0.033)2"# $% =1.712 counts  

 
Ib =

3
1.8

=1.667 cps; s(Ib ) =
3(50!1.667)2 +87(0!1.667)2

90*89
= 0.951 cps  

 
As the background value is very small, assuming it to be part of an ordinary Poisson distribution does not require 
a dedicated study. Still, this assumption is confirmed by the close match between the standard deviation values 
above and proved by the Chi-square goodness-of-fit test presented in Table 2 from Electronic Appendix 1. 
 
Lc will be estimated using three decision rules: 
 
(a) for the sample signal to be detected, the mid-p adjusted version of the binomial rule, eqn 69, tb/ts=3, requires at 
least 4 counts to be registered during the signal measurement. This example is partly described in the main text 
(section 2.4). The max number of counts in the signal measurement, when the signal is not yet detected is equal to 
3. At ts=0.6 s, Lc=3/0.6-3/1.8=3.333 cps; detection occurs when Is net=Is-Ib>Lc, i.e., when Is net=4/0.6-3/1.8=5 cps. 
 
(b) rule based on the square root transform, d=0.4, eqn (65,90), as recommended in the main text:  
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(c) √2Nb rule, eqn (64) and (73), respectively:  

Lc = (Is ! Ib )c =1.645 1.667
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Conclusions. The mid-p adjusted version of the binomial rule and the square root transform (d=0.4) return the 
same result: 3 counts in the signal are not yet detected, while 4 counts are detected. From the size modelling for 
these rules, we know that they can be conservative ( Nb / 3  limiting to zero) or robust (Nb / 3> 2  for the mid-p 
adjusted version of the binomial rule, Nb / 3> 0.5  for the square root transform). As the mean background count 
number is unknown, we cannot provide more details. The liberal behaviour is excluded anyway. The √2Nb rule 
returns a smaller Lc value that implies, contrary to the above rules, that 3 counts in the signal are already detected. 
From the size modelling, we know that this decision is liberal: the √2Nb rule demonstrates a liberal behaviour for 
all Nb / 3  values that could yield an estimate of Nb = 3  counts with a non-negligible probability. 
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Example (iii); input: Nb=3373 counts, tb=0.90 s (90 sweeps x 10 ms dwell time per sweep), tb/ts=2. The corre-
sponding statistics can be found in Table 1 from Electronic Appendix 1, see time-resolved data for 23Na. s(Nb) and 
s(Ib) are estimated as follows: 
 
assuming the ordinary Poisson model, eqn (30,32):  
Nb = 3373 counts; s(Nb ) = 3373 = 58.078 counts  

Ib =
3373
0.9

= 3747.778 cps; s(Ib ) =
3747.778
0.9

= 64.531 cps
  

assuming any distribution of uncorrelated sweep readings (eqn 28,31): 

Nb = 3373 counts; Nsw = 3373 / 90 = 37.478 counts; s(Nb ) =
90
89
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" = 58.709 counts  

 
Ib =
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The background intensity is relatively high, and the presence of an excess variance, i.e., an over-dispersion of 
counts compared to the prediction from the ordinary Poisson distribution, cannot be ruled out a priori. Still, the 
standard deviation values above are closely matched; moreover, the Chi-square goodness-of-fit test presented in 
Table 3 from Electronic Appendix 1 shows that both the ordinary Poisson distribution and the Gauss distribution 
are acceptable proxies for the statistics observed in the background measurement studied. 
 
Lc will be estimated using three decision rules: 
 
(a) rule based on the square root transform, d=0.4, eqn (65,90), as recommended in the main text:  
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(b) √2Nb rule, eqn (64) and (73), respectively:  
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Lc = (Is ! Ib )c =1.645"65.266 1+ 2
1
=185.957 cps

 
(c) extension of the square root transform for data that may contain an excess variance, eqn (78), as recommended 
in the main text: 
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Conclusions. All decision rules from this example yield similar critical values. In all cases, the detection is ex-
pected to be robust, given the large number of counts contained in the studied background measurement. Any of 
the above rules can be used for the practical estimation of critical levels, provided large background count num-
bers are handled and the ordinary Poisson model is still relevant.  
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Example (iv); input: Nb=120273 counts, tb=0.90 s (90 sweeps x 10 ms dwell time per sweep), tb/ts=2. The corre-
sponding statistics can be found in Table 1 from Electronic Appendix 1, see time-resolved data for 29Si. s(Nb) and 
s(Ib) are estimated as follows: 
 
assuming the ordinary Poisson model, eqn (30,32):  
Nb =120273 counts; s(Nb ) = 120273 = 346.8 counts  

Ib =
120273
0.9

=133636.7 cps; s(Ib ) =
133636.7
0.9

= 385.3 cps
  

assuming any distribution of uncorrelated sweep readings (eqn 28,31): 

Nb =120273 counts; Nsw =120273 / 90 =1336.4 counts; s(Nb ) =
90
89
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The background intensity is high: the presence of an excess variance, i.e., an over-dispersion of counts compared 
to the prediction from the ordinary Poisson distribution, can be suspected. The standard deviation values above 
are mismatched, with the values obtained assuming the ordinary Poisson model being smaller. The Chi-square 
goodness-of-fit test presented in Table 4 from Electronic Appendix 1 indeed shows that the ordinary Poisson dis-
tribution cannot be applied to describe the studied background measurement. The Gauss distribution is applicable. 
Decision rules for ordinary Poisson distributed data cannot be employed; they will underestimate Lc values. 
 
Lc will be estimated using two decision rules applicable for the description of data with an excess variance: 
 

(a) eqn (73): Lc = (Is ! Ib )c =1.645"630.7 1+ 2
1
=1797.0 cps  

(b) extension of the square root transform for data that may contain an excess variance, eqn (78), as recommend-
ed in the main text: 
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Conclusions. Both decision rules from this example yield similar critical values. In all cases, the detection is ex-
pected to be robust, given the large number of counts contained in the studied background measurement. Any of 
the above rules can be used for the practical estimation of critical levels, provided very large background count 
numbers are handled and the ordinary Poisson model is not applicable.  

 

 
 

 


