Appendix 8. Practical calculation of critical levels: Examples.

Here, we briefly consider four examples of LA-ICPMS background measurements; in each case, the goal is to
estimate the critical level. The first example describes a hypothetical, though practically important situation when
the whole measurement yields zero counts. The remaining three examples are based on real background meas-
urements described in Electronic Appendix 1. In all cases, the nominal level of false positive errors is set to 5%.

Example (i); input: N,=1,=0, t,=t~1 s. Each of the sweeps constituting the background measurement returns zero
counts (per second). Standard deviation estimates s(/V,) and s(/,) according to eqn (28,30-32) are all equal to zero
(in the absence of empirical manipulations with the background). L. will be estimated using four decision rules:

(a) for the sample signal to be detected, the mid-p adjusted version of the binomial rule, eqn 69, requires at least 4
counts to be registered during the signal measurement, provided #,=t,:
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At t=1s, L.=3/1-0/1=3 cps; detection occurs when /; ,.,~L-1,>L,, i.e., when I ,.~4/1-0/1=4 cps.

(b) rule based on the square root transform, d=0.4, eqn (65,90), as recommended in the main text:

LC=(Q—IQC=OA(%—%)+Ofﬁ7(%+%)+1645J«)+04)%(%+%)=2825cps

(¢) V2N, rule, eqn (63,72): L. =(I,-1,), =1.645 fOG+%) =1.645x0x /1 +% =0 cps

(d) V2N, rule empirically corrected for an ‘empty’ background by adding one count to one of the sweep readings
constituting the background measurement, eqn (64,73):
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assuming the ordinary Poisson distribution, eqn (32): s({,) = I =1 ¢cps

assuming any distribution of uncorrelated sweep readings (eqn 31):
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=1 ¢ps, number of sweeps arbitrarily set to 100 (10 ms dwell time);

=1 cps, number of sweeps arbitrarily set to 50 (20 ms dwell time), etc.

Accordingly, L, =(I -1,),=1.645 IG+%) =1.645x1xv1+1=2.326 cps

Conclusions. The highest L. value was returned by the mid-p adjusted version of the binomial rule. It amounts to
3 ¢ps, i.e., 3 counts in the signal are not yet detected, while 4 counts are detected. From the size modelling for this

rule, we know that it can be conservative (ﬁb limiting to zero) or robust (ﬁb >4, t,=t,). Since the probability to

obtain a zero background estimate at N, >4 is small, it can be safely concluded that the mid-p adjusted version
of the binomial rule returned a conservative decision (which would become even more conservative when using
the canonical formulation of this rule, see section 2.3 of the main text). Using the square root transform (d=0.4)
returns an L. value of 2.825 cps: 3 counts in the signal are already detected. From the size modelling for this rule,

we know that it can be conservative ( NV, limiting to zero) or robust (N, >1.1). As the mean background count
number is unknown, we cannot provide more details. Still, we are sure that the liberal decision is excluded: if we
repeat our paired analysis many times, the rate of false detections will be lower than the declared level of 5%, or
close to this level. Using the V2N, decision rule in its original formulation, we have to accept that the rate of false
detections will be much higher than declared, although an L. value of zero returned by this rule can, at first
glance, look attractive: any positive sample signal is detected. Empirically correcting this rule for an ‘empty’
background partly repairs the situation, provided the background estimate is happened to contain zero counts. At
Np>0, liberal detection decisions are taken, as no correction is applied; the overall behaviour of this decision rule
remains liberal. Even if one count is added to any outcome of the background measurement, including the non-
zero outcomes, the V2 rule continuous to behave liberally (see Ref. 5 from the main text).



Example (ii); input: N,=3 counts, #,=1.8 s (90 sweeps x 20 ms dwell time per sweep), #,/t,=3. The corresponding
statistics can be found in Table 1 from Electronic Appendix 1, see time-resolved data for *’Nb. s(N,) and s(I,) are
estimated as follows:

assuming the ordinary Poisson model, eqn (30,32):

N, =3 counts; s(N,)= V3 =1.732 counts

3 1.667
I, =§=1.667 eps; s(1,) = 18 =0.962 cps

assuming any distribution of uncorrelated sweep readings (eqn 28,31):

N, =3 counts; N, =3/90=0.033 counts; s(N,)= J%[3(1—0.o33)2 +87(0-0.033)* | = 1.712 counts
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As the background value is very small, assuming it to be part of an ordinary Poisson distribution does not require
a dedicated study. Still, this assumption is confirmed by the close match between the standard deviation values
above and proved by the Chi-square goodness-of-fit test presented in Table 2 from Electronic Appendix 1.

L. will be estimated using three decision rules:

(a) for the sample signal to be detected, the mid-p adjusted version of the binomial rule, eqn 69, #,/¢,=3, requires at
least 4 counts to be registered during the signal measurement. This example is partly described in the main text
(section 2.4). The max number of counts in the signal measurement, when the signal is not yet detected is equal to

3. Att=0.6 s, L.=3/0.6-3/1.8=3.333 cps; detection occurs when I ,.,~I-I,>L., i.e., when I ,.,~4/0.6-3/1.8=5 cps.

(b) rule based on the square root transform, d=0.4, eqn (65,90), as recommended in the main text:

L=(-1,), =o.4(i-L)+o.677(L+i)+1.645 a .667*1.8+0.4)L(L+i) = 4431 cps
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(¢) V2N, rule, eqn (64) and (73), respectively:
L=(U-1,). =1 .645\/1 .667(&+%) =3.166 cps; L.=(I,-1,). =1.645x0.951, /1+% =3.129 cps

Conclusions. The mid-p adjusted version of the binomial rule and the square root transform (4=0.4) return the
same result: 3 counts in the signal are not yet detected, while 4 counts are detected. From the size modelling for

these rules, we know that they can be conservative (X]b /3 limiting to zero) or robust (Nb /3> 2 for the mid-p

adjusted version of the binomial rule, N, /3> 0.5 for the square root transform). As the mean background count
number is unknown, we cannot provide more details. The liberal behaviour is excluded anyway. The V2N, rule
returns a smaller L. value that implies, contrary to the above rules, that 3 counts in the signal are already detected.
From the size modelling, we know that this decision is liberal: the V2N, rule demonstrates a liberal behaviour for

all N, /3 values that could yield an estimate of N, =3 counts with a non-negligible probability.



Example (iii); input: N;=3373 counts, #,=0.90 s (90 sweeps x 10 ms dwell time per sweep), #,/t,=2. The corre-
sponding statistics can be found in Table 1 from Electronic Appendix 1, see time-resolved data for **Na. s(N,) and
s(Ip) are estimated as follows:

assuming the ordinary Poisson model, eqn (30,32):

N, =3373 counts; s(N,)=~3373=58.078 counts

I, - % 3747778 cps; s(I,) = /% _ 64531 cps

assuming any distribution of uncorrelated sweep readings (eqn 28,31):

k
N, =3373 counts; Ny =3373/90=37478 counts; s(N,)= J%E(N-W —37,478)2 =58.709 counts
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The background intensity is relatively high, and the presence of an excess variance, i.e., an over-dispersion of
counts compared to the prediction from the ordinary Poisson distribution, cannot be ruled out a priori. Still, the
standard deviation values above are closely matched; moreover, the Chi-square goodness-of-fit test presented in
Table 3 from Electronic Appendix 1 shows that both the ordinary Poisson distribution and the Gauss distribution
are acceptable proxies for the statistics observed in the background measurement studied.

L. will be estimated using three decision rules:

(a) rule based on the square root transform, d=0.4, eqn (65,90), as recommended in the main text:
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(b) V2N, rule, eqn (64) and (73), respectively:

L =(I-1,), =1645 3747.778(L+L) ~183.862 cps
045 09

L =(I.-1,), =1645x65266 /1+% =185.957 cps

(c) extension of the square root transform for data that may contain an excess variance, eqn (78), as recommended
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in the main text:

Lc = (I.S _Ib)c =

=0.99999540 (unitless)

Conclusions. All decision rules from this example yield similar critical values. In all cases, the detection is ex-
pected to be robust, given the large number of counts contained in the studied background measurement. Any of
the above rules can be used for the practical estimation of critical levels, provided large background count num-
bers are handled and the ordinary Poisson model is still relevant.



Example (iv); input: N,=120273 counts, #,=0.90 s (90 sweeps x 10 ms dwell time per sweep), #,/t,=2. The corre-
sponding statistics can be found in Table 1 from Electronic Appendix 1, see time-resolved data for *’Si. s(N;) and
s(Ip) are estimated as follows:

assuming the ordinary Poisson model, eqn (30,32):

N, =120273 counts; s(N,)=+120273 =346.8 counts

I - 1282973 ~133636.7 cps; s(I,) = % =3853 cps

assuming any distribution of uncorrelated sweep readings (eqn 28,31):

k
N, =120273 counts; N =120273/90=1336.4 counts; s(N,)= \/g (NSWI. —1336,4)2 =567.7 counts
=1
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The background intensity is high: the presence of an excess variance, i.e., an over-dispersion of counts compared
to the prediction from the ordinary Poisson distribution, can be suspected. The standard deviation values above
are mismatched, with the values obtained assuming the ordinary Poisson model being smaller. The Chi-square
goodness-of-fit test presented in Table 4 from Electronic Appendix 1 indeed shows that the ordinary Poisson dis-
tribution cannot be applied to describe the studied background measurement. The Gauss distribution is applicable.
Decision rules for ordinary Poisson distributed data cannot be employed; they will underestimate L. values.

L. will be estimated using two decision rules applicable for the description of data with an excess variance:

(a)eqn (73): L =(I, - 1,). =1.645x 630.7 /1+% ~1797.0 cps

(b) extension of the square root transform for data that may contain an excess variance, eqn (78), as recommend-

ed in the main text:
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Lc = (I.S _Ib)c =

=0.99999056 (unitless)

Conclusions. Both decision rules from this example yield similar critical values. In all cases, the detection is ex-
pected to be robust, given the large number of counts contained in the studied background measurement. Any of
the above rules can be used for the practical estimation of critical levels, provided very large background count
numbers are handled and the ordinary Poisson model is not applicable.



