SUPPLEMENTARY INFORMATION

Mesofluidic platform integrating restricted access-like sorptive microextraction as a front-end to inductively-coupled plasma atomic emission spectrometry for determination of trace level concentrations of lead and cadmium as contaminants in honey

Alexandra Sixto^a, Marta Fiedoruk-Pogrebniak^b, María Rosende^c, David Cocovi-Solberg^c, Moisés Knochen^a, Manuel Miró^{c*}

a) Cátedra de Química Analítica, Departamento Estrella Campos, Facultad de Química. Universidad de la República. Av. Gral. Flores 2124, 11800 Montevideo, Uruguay.

b) Department of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.

c) FI-TRACE group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa, km 7.5, E-07122 Palma de Mallorca, Spain.

* Corresponding author. Phone: +34-971712746. E-mail: manuel.miro@uib.es

Table S1. Physicochemical characteristics of chelators and ion-exchangers explored as

 sorptive materials

Sorptive	Particle size	Resin form	Ion exchange	Supplier
materials	distribution	(from	capacity	
	(µm)	manufacturer)	$(meq g^{-1})$	
Chelex 100	38-75	Na ⁺ form		Fluka
Dowex 50X8	75-150	H ⁺ form		Fluka
Oasis MCX	30	H ⁺ form	1	Waters
Bond Elut	40-55	H ⁺ form	0.60-1.20	Agilent
Plexa PCX				

Table S2.	Operating	conditions	for	on-line	ICP	-AES	detection
-----------	-----------	------------	-----	---------	-----	------	-----------

RF generator power (W)	1300
Frequency of RF generator (MHz)	40
Nebulizer flow rate (L min ⁻¹)	0.7
Coolant gas flow rate (L min ⁻¹)	15
Auxiliary gas flow rate (L min ⁻¹)	0.2
Carrier (2 % HNO ₃) flow rate (mL min ⁻¹)	1
Sample flush time (s)	0
Sample uptake delay (s)	0
View mode	axial
Analytical wavelengths Pb (nm)	220.353/217.00
Analytical wavelengths Cd (nm)	228.802/214.440

Table S3. Analytical sequence of the µSPE-RAM type LOV procedure for preconcentration and determination of Cd and Pb in honey samples by ICP-AES.

Description	SP	LOV	Injection valve	Flow rate	Volume
		Position	Position	(µL s ⁻¹)	(µL)
System conditioning:					
a) Filling SP with carrier	Aspirate		Inject	200	2500
b) Filling the transfer line (to discharge beads)	Dispense	4	Inject	200	1500
Sorbent conditioning:					
a) Beads loading	Aspirate	6	Inject	200	200
	Aspirate	1	Inject	8	50
	Dispense	4	Inject	8	350
	Dispense	3	Inject	100	250
b) Conditioning					
	Aspirate	6	Inject	100	
b ₁) 3.0 mol L ⁻¹ HNO ₃	Aspirate	5	Inject	100	200
b ₂) Acetic acid/acetate buffer (pH 4.5)	Dispense	4	Inject	20	350
	Dispense	4	Inject	20	350
					550
Cleaning					
a) HC cleaning	Aspirate carrier		Inject	300	4700
	Dispense	3	Inject	300	5000
b) Sample tube cleaning	Aspirate carrier		Inject	300	200
	Aspirate	6	Inject	100	200

	Aspirate	2	Inject	100	500
	Dispense	3	Inject	100	900
Sample loading	Aspirate carrier		Inject	100	300
	Aspirate	6	Inject	100	300
	Aspirate	2	Inject	100	4000
	Aspirate	6	Inject	100	300
Rinse with buffer	Dispense	4	Inject	20	4900
Elution	Aspirate carrier		Inject	100	500
	Aspirate	6	Inject	100	100
	Aspirate	5	Inject	100	200
	Aspirate	6	Inject	100	100
	Dispense	4	Load	14	900
ICP-OES activation and signal recording	Stop flow		Inject		
Beads disposal	Aspirate carrier		Inject	100	400
	Dispense	4	Inject	100	200
	Aspirate	6	Inject	100	200
	Aspirate	4	Inject	200	1000
	Dispense	3	Inject	200	1400
Cleaning of HC	Aspirate carrier		Inject	300	5000
	Dispense	3	Inject	300	5000

Table	S4.	Full	fractional	design	for	multivari	ate	screening	of	critical	variables	in	the
elution	ı stag	ge of	Pb and Cd	for the	μSI	PE-LOV p	oroc	edure.					

Run	Elue concenti (mol l	nt ration L ⁻¹)	Eluent flo (µL s	ow rate 5 ⁻¹)	Eluent v (µL	olume 4)	Absolute recovery (%)		
	Uncoded	Coded	Uncoded	Coded	Uncoded Coded		Cd	Pb	
1	3	1	20	1	600	1	82	63.5	
2	3	1	20	1	100	-1	75.6	59.1	
3	3	1	8	-1	600	1	74.5	76.0	
4	3	1	8	-1	100	-1	70.8	67.5	
5	1	-1	20	1	600	1	69.5	50.0	
6	1	-1	20	1	100	-1	72.7	36.9	
7	1	-1	8	-1	600	1	76.4	54.0	
8	1	-1	8	-1	100	-1	71.5	44.6	
9	2	0	14	0	350	0	79.6	53.7	
10	2	0	14	0	350	0	81.4	66.2	
11	2	0	14	0	350	0	77.9	67.6	

Figure S2. a) Pareto charts of standardized effects for Pb (α = 0.05). b) Pareto charts of standardized effects for Cd (α = 0.05). Variables: (A) Eluent concentration; (B) Eluent flow rate; (C) Eluent volume. Eluent flow rate: 1.0-3.0 mol L⁻¹; eluent flow rate: 8-20 µL s⁻¹; eluent volume: 100-600 µL.

b)

Figure S3. Smoothed readouts for on-line analysis of lead in five honey samples (H1-H5) at two spike concentration levels and calibration standards. Sample 2 (H2) is contaminated by Pb at a level above MAC. Note that the calibration graph in Table 1 refers to raw (unsmoothed) data as obtained by ICP-AES.

