Electronic Supplementary Information

ESI Table 1: Typical instrument working conditions.

HPLC						
Agilent 1200 coupled to Agilent ICP-MS 7700						
Autosampler temperature	4 °C					
Injection volume	40 µL					
Flow rate	0.5 mL/min					
Column	MonoQ 5/50 GL					
Oven temperature	30 °C					
Eluent	A: 12.5 mM Tris pH 7.2					
	B: A + 125 mM NH ₄ Ac pH 7.2					
Gradient	7 % B 0 – 5 min					
	7 - 50 % B 5 - 10 min					
	50 % B 10 – 15 min					
	50 - 86 % B 15 - 17 min					
	86 % B 17 – 19 min					
	86 – 100 % B 19 – 20 min					
	100 % B 20 – 25 min					
Agilent 1200 coupled to Bruker micrOTOF-Q						
Flow rate	0.2 mL/min					
Column	Jupiter300-C4					
Oven temperature	40 °C					
Eluent	A: 0.1% HCOOH in H ₂ O					
	B: 0.1% HCOOH in CH ₃ CN					
Gradient	5 % B 0 – 5 min					
	5 - 100% B 5 - 55 min					
	100% B 55 – 65 min					
	100 - 5% B 65 - 70 min					
	5% B 70 – 80 min					
Accela coupled to Element2						
Injection volume	50 µL					
Flow rate	1 mL/min					
Column	HiTrap (SEC) / MonoQ 5/50 GL					
Oven temperature	30 °C					
Eluent (SEC)	20 mM Tris + 50 mM KCl pH 7.4					
Eluent (MonoQ)	A: 25 mM Tris pH 7.4					
	B: A + 250 mM NH ₄ Ac pH 7.4					
Gradient (MonoQ)	0 - 100 % B 0 - 30 min					
	100 % B 30 – 35 min					
ICP-MS						
Agilent 7700						
RF Power	1500 W					
Sample depth	8.0 mm					
Plasma gas flow	15 L/min					

Spraying chamber temperature	2 °C
Isotopes monitored	63, 65, 66, 67
Collision gas	4.5 mL He / no gas

ESI Figure 1. ESI-MS data for the verification of the identity of native SOD1. A) Total ion chromatogram of SOD1. B) Charge distribution of SOD1. C) Mass calculation by charge deconvolution.

Equation for the determination of the Cu mass fraction in native SOD1 by single post-column IDMS

Calculation of K

$$R^{true} = K * R^{meas}$$

Single post-column IDMS

$$w_{x} = \frac{m_{y} * w_{y}}{\rho_{x} * V_{inj}} * \frac{M_{x}}{M_{y}} * \frac{\sum R_{x}}{\sum R_{y}} * \int_{t_{1}}^{t_{2}} \frac{R_{y} - R_{bx}}{R_{bx} - R_{x}} dt$$
(3)

R^{IUPAC}

 $\overline{R_K}$ (1)

(2)

 $K = \frac{1}{2}$

symbol	unit	definition						
$W_{\rm x}, W_{\rm y}$	g/kg	mass fraction of Cu in sample x and spike y, resp.						
my	g	mass flow of spike y						
$ ho_{ m x}$	g/cm ³	density of sample x						
$V_{ m inj}$	mL	injection volume of sample x						
$M_{ m x},M_{ m y}$	g/mol	molar masses of natural Cu in sample x and isotopically						
		labelled Cu in spike y						
$R_{\rm x}, R_{\rm y}$	mol/mol	isotope amount ratio of spike and reference isotope						
		(⁶⁵ Cu/ ⁶³ Cu) in sample x and spike y, resp.						
R _{bx}	mol/mol	isotope amount ratio of spike and reference isotope						
		$(^{65}Cu/^{63}Cu)$ in blend bx (sample x + spike y)						
Κ	1	Correction factor for mass bias						
R ^{IUPAC}	mol/mol	natural isotope ratio according to IUPAC						
$R_{\rm k}$	mol/mol	measured isotope ratio in reference k						
R ^{true}	mol/mol	isotope ratio after correction for mass discrimination						
R ^{meas}	mol/mol	measured isotope ratio in sample x						

ESI Table 2. Meaning of the symbols used in the equations (1) - (3).

Instrumentation for characterization of produced apo-SOD1 and *SOD1

Both the apo- and remetallated SOD1 as well as the native protein, were characterized regarding metal content, protein integrity and activity. The characterization of the produced apo-SOD1 and the remetallated protein was performed with an Accela HPLC system (Thermo Fisher, Waltham, USA) and an sector-field ICP-MS (Element 2, Thermo Scientific, Schwerte, Germany) in medium resolution (typical operating parameters are also summerized in *ESI* table 1). For the quantification of Cu and Zn in the apo- and the remetallated form of the protein, external calibration using Cu and Zn standard solution and solutions prepared from ⁶⁵Cu and ⁶⁸Zn were used. Speciation of apo- and remetallated SOD1 was done using size exclusion chromatography (SEC) on a HiTrap column (Pharmacia, Uppsala, Sweden) and strong anion exchange (SAX) chromatography. Protein integrity was tested using ESI-FT-MS (solvent: 1 mM NH₄Ac buffer at pH 7.4, flow injection). An Orbitrap Discovery system (Thermo Scientific) was used for this purpose for the determination of the spectra. The positive fourier transformation (FT) mode with a resolution of 30.000 and an extended mass range from 600 - 3000 Da was used in ESI-FT-MS. The activity was determind according to Marklund¹⁵ using an UV-vis spectrophotometer (Lambda 25, Perkin Elmer, Cambridge, UK). An electrophoresis system from Atto (Tokyo, Japan) was used for native PAGE. Gels were self-casted and contained 7 % polyacrylamid and were stained with Coomassie blue.

ESI Table 3. Results of ICP-MS measurements expressed as protein concentration of produced apo-SOD1 and isotopically labelled SOD1 (n = 9).

	total Cu ng/mg	RSD %	⁶⁵ Cu ng/mg	RSD %	Total Zn ng/mg	RSD %	⁶⁸ Zn ng/mg	RSD %	Activity U/mg	RSD / %
native SOD	5.96	4.5			4.38	6.7			5690	4
apo-SOD A	1.91	2.5			1.61	1.1			260	20
*SOD A	6.49	4.5	4.46	4.4	5.62	5.6	3.55	4.1	4918	11

apo-SOD B	0.53	3.4			0.34	2.3			164	14
*SOD B	6.3	4.5	6.1	4.5	6.99	3.9	6.15	3.6	5752	15
apo-SOD C	0.72	4.2			0.72	7.2			311	24
*SOD C	4.3	4.7	3.76	4.4	6.23	5.1	5.18	3.8	4733	1

ESI Figure 2. Native PAGE to determine the structural state of A) the apo-SOD1 after production using methods A, B and C, resp., compared to native SOD1. Lane 1: native SOD1, lane 2: apo-SOD1 method A, lane 3: apo-SOD1 method B, lane 4: apo-SOD1 method C and B) the remetallated SOD1 spikes compared to native SOD1. Lane 1: native SOD1, lane 2: *SOD1 A, lane 3: *SOD1 B, lane 4: *SOD1 C.

ESI Figure 3. Charge distribution of apo-SOD1 prepared according to A) method A, B) method B and C) method C.

ESI Figure 4. Mass calculation by charge deconvolution for SOD1 and *SOD1 prepared according to method A, B and C.

ESI Figure 5. Stability of *SOD1 C on MonoQ 5/50 GL column: A) 65 Cu / 63 Cu ratios and B) 68 Zn / 64 Zn ratios for pure spike material, erythrocyte lysate, erythrocyte lysate (Hb precipitated) and both of the latter spiked with *SOD C. Y-axis is set-off for clarity purposes.

ESI Figure 6. Stability of *SOD1 B on MonoQ 5/50 GL column: A) 65 Cu / 63 Cu ratios and B) 68 Zn / 64 Zn ratios for pure spike material, erythrocyte lysate, spiked erythrocyte lysate, erythrocyte lysate (Hb precipitated) and spiked erythrocyte lysate (Hb precipitated). Y-axis is set-off for clarity purposes.

ESI Figure 7. 65 Cu/ 63 Cu resp 67 Zn/ 66 Zn isotope ratio of human SOD spike in erythrocyte lysate over a time period of 48 h. The error bars represent the standard deviation (n = 3).