Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2015

The magnetic force acting on a cluster of magnetic nanoparticles, $F_{mag} = V_x \cdot M_{sat} \cdot \mu_0^{-1} \cdot \nabla B_x$, is balanced by the drag force, $F_{drag} = 3\pi \cdot \mu \cdot d_{cell} \cdot v$, and therefore $F_{mag} = F_{drag}$ (Tseng et al., 2009). By solving this equation we obtain the estimated volume of the MNPs cluster per cell, and the number of MNPs per cell.

Detailed calculation:

$$F_{drag} = 3\pi \cdot \mu \cdot d_{cell} \cdot v$$

Medium viscosity $\mu = 7.3 \cdot 10^{-4} \text{ pa} \cdot \text{S}$

Cell diameter $d = 8 \cdot 10^{-6} \text{ m}$

Cell velocity $v = 10 \,\mu\text{m/min} = 1.7 \cdot 10^{-7} \,\text{m/s}$

 \downarrow

The drag force: $F_{drag} \cong 9 \cdot 10^{-15} \text{ N}$

$\mathbf{F}_{\text{mag}} = \mathbf{V}_{\mathbf{x}} \cdot \mathbf{M}_{\text{sat}} \cdot \mathbf{\mu_0}^{-1} \cdot \mathbf{\nabla} \mathbf{B}_{\mathbf{x}}$

Saturation magnetization of the NPs: $M_{sat} = 60 \, emu/g = 312 \, emu/cm^3$

Density of an iron oxide NP: $\rho = 5.2 \, \frac{\text{g}}{\text{cm}^3}$

In SI units (1 emu/cm³ = 10^3 A/m) ^a: $M_{sat} \cdot \mu_0^{-1} \cong 3 \cdot 10^5$ A/m

The magnetic gradient at x=2 cm b : $\nabla B_{x=2} \cong 3$ T/m

Estimation of the volume of the NPs cluster: $V_x = ?$

 \Downarrow

 $9 \cdot 10^{-15} = V \cdot 3 \cdot 10^5 \cdot 3$

Volume of the MNPs cluster: $V = 1 \cdot 10^{-20} \text{ m}^3$

Volume of a single MNP: $\frac{4}{3} \cdot \pi \cdot (7.5 \cdot 10^{-9})^3 \cong 10^{-24} \text{ m}^3$

 \Downarrow

Number of MNPs per cell $\approx 10,000$

Notes

- a. Taking into account that μ_0 is dimensionless and equal to 1 in cgs system.
- b. According to measurements.