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1 Generalities

To derive the expression of electrokinetic effects for passivated electrodes, we use sim-
ilar development as those indicated in [1, 2]. The general situation is represented in
Fig. 1 and is assumed two-dimensional. Cylindrical coordinates are used. All parame-
ters are defined in Section 2.5 of the manuscript and the friction factor is defined as
γ = 6πηa, with η the dynamic viscosity of the electrolyte and a the bacteria radius.
Resonance effects that are possibly due to the setup (cables, probes, etc.) are not
considered in the following models.
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Figure 1 – Schematic view of the situation

2 Expression of the electrical field

Let ~Eins and ~Esol be the electric field contained in the insulating layers of thickness
tins and in the electrolyte, respectively. The current conservation at the insulator-
electrolyte interface gives the following relationship: εins ~Eins = (εsol + σsol

jω )~Esol . The
applied AC electric potential V is thus expressed as:

V = −
∫ tins

0

Einsdx −
∫ πr+tins

tins

Esoldx −
∫ πr+2tins

πr+tins

Einsdx

= 2tinsEins + πrEsol

=

[
2
tins
εins

(
εsol +

σsol
jω

)
+ πr

]
· Esol

Consequently, the electric field ~Esol can be expressed as:

~Esol =
V

πr
·

(
1

1 + 2 · (εsolεins
+ σsol

jωεins
) · tinsπr

)
︸ ︷︷ ︸

G(ω,r)

·~aθ

It can be noticed that the electric field depends on the frequency when tins 6= 0, unlike
gold electrodes (tins = 0) immersed in solution where the electric field ~Esol = V

πr · ~aθ
is constant [1, 2]. The modulus of G(ω, r) and ~Esol are equal to:

‖G(ω, r)‖2 =
1

(1 + 2εsol ·tinsεins ·πr )2 + (2σsol ·tinsωεins ·πr )2

‖Esol‖2 =
V 2

π2
·

1

(r + 2εsol tins
εinsπ

)2 + (2σsol tinsωεinsπ
)2
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3 Expression of the dielectrophoresis

The dielectrophoresis force can generally be expressed as [1, 2]:

FDEP (t) = (~m(t) · ~∇)~Esol(t)

The time-average dielectrophoresis force 〈~FDEP 〉 is thus equal to:

〈~FDEP 〉 =
1

2
· R[(~m(ω) · ~∇)~E∗sol ]

=
1

2
· R[(4πεsol · a3fCM(ω)~Esol · ~∇)~Esol(ω)∗]

= 2πεsol · a3 · R

[
fCM(ω)

~∇{~Esol · ~E∗sol}
2

]

= πεsol · a3 · R

[
fCM(ω)~∇|~Esol |2

]

where fCM is the Clausius-Mossoti factor. As |~Esol |2 is always a real number (even if
~Esol is complex), we get:

〈~FDEP 〉 = πεsola
3 · R{fCM(ω)} · ~∇|~Esol |2

= πεsola
3 · R{fCM(ω)} ·

∂|~Esol |2

∂r
· ~ar

= −
2

π
· a3V 2εsol · R{fCM(ω)} ·

( r + 2εsol ·tinsεins ·π
r4

)
· ‖G(ω, r)‖4 · ~ar

The resulting bacteria speed is computed as follows:

〈~vDEP 〉 =
〈~FDEP 〉
γ

= −
1

3π2η
· a2V 2εsol · R{fCM(ω)} ·

( r + 2εsol ·tinsεins ·π
r4

)
· ‖G(ω, r)‖4 · ~ar

= −
a2V 2εsol · R{fCM(ω)} ·

(
r + 2εsol ·tinsεins ·π

)
3π2η ·

[
(r + 2εsol ·tinsεinsπ

)2 + (2σsol tinsωεinsπ
)2
]2 · ~ar

= −
a2V 2εsol · R{fCM(ω)}

3π2η ·
(
r + 2εsol ·tinsεins ·π

)3[
1 + ( 2σsol tins

ω(rεinsπ+2εsol tins)
)2
]2 · ~ar

As R{fCM(ω)} is positive, the speed is directed towards the sensor centre and positive-
dielectrophoresis occurs then.
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4 Expression of the AC-electroosmosis
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Figure 2 – AC representation of the system complex impedance.

Based on Fig. 2 and the expression of the series capacitance Cs = [C−1ins +C−1DL]−1,
the voltage drop across one double layer is:

∆φDL =
∆φ∗DL

2

=
1

2
·

Itot
jωCDL/2

=
1

2
·

[
(Gsol + jωCsol)

−1 + (jωCs/2)−1
]−1

jωCDL/2
· V

=
1

2
·

1

CDL/Cs
·

V

1 + jωCs/2
Gsol+jωCsol

=
1

2
·

1

CDL/Cs
·

V

1 + jωCs/2·(Gsol−jωCsol )
G2sol+ω

2C2sol

=
1

2
·

1

CDL/Cs
·

V

(1 + ω2τ1τ2) + jωτ1

avec τ1 ,
GsolCs/2

G2sol+ω
2C2sol

= πr ·σsolCs/2
σ2sol+ω

2ε2sol
and τ2 ,

Csol
Gsol

= εsol
σsol

, since CDL = εsol/λD,

Cins = εins/tins , Csol = εsol/(πr), Gsol = σsol/(πr), Cs = εsolεins
tinsεsol+λDtins

. Thus,

|∆φDL|2 =
1

4(CDL/Cs)2
·

V 2

ω2τ21 + (1 + ω2τ1τ2)2

Therefore:
∂|∆φDL|2

∂r
=

∂|∆φDL|2

∂τ1
·
∂τ1
∂r

= −
V 2ω2

2(CDL/Cs)2r
·

(τ1 + τ2)τ1 + ω2τ21 τ
2
2

(ω2τ21 + (1 + ω2τ1τ2)2)2

Finally, the slip velocity inside the electrical double layer is approximated by [3]:

~vsl ip ,
εsol
2η
· Λ · R{∆φDL · ~E∗t }

= −
εsol
2η
· Λ · R{∆φDL ·

∂∆φ∗DL
∂r

} · ~ar
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where Λ = Cstern
Cstern+CDL

' 0.25 is an empirical factor with Cstern the Stern capacitance
[2]. Because c · ∂c∗/∂r = c∗ · ∂c/∂r = 0.5 · ∂(c · c∗)/∂r = 0.5 · ∂|c |2/∂r for all
complex c , the following formula is finally obtained:

~vsl ip = −
εsol
4η
· Λ · R{

∂|∆φDL|2

∂r
} · ~ar

= −
εsol
4η
· Λ ·

∂|∆φDL|2

∂r
· ~ar

=
V 2ω2εsolΛ

8η(CDL/Cs)2r
·

(τ1 + τ2)τ1 + ω2τ21 τ
2
2(

ω2τ21 + (1 + ω2τ1τ2)2
)2 · ~ar

It is important to remember that ~vsl ip is only a slip velocity which exists only at the
electrode surface, so that ~ar is parallel to ~ax .

5 Expression of the electrothermal flow

To estimate the electrothermal flow, it is required to evaluate the increase of the
local temperature induced by the electric field ~Esol . The Poisson equation gives:
−σsolEsol(t)2 = −k ~∇2T (t). Since Esol(t) = Esol cos(ωt), we have: Esol(t)2 =
E2sol
2 ·(1+cos(2ωt)) = E2sol,RMS ·(1+cos(2ωt)). The following relationship is obtained

by neglecting AC terms:

−σsolE2sol,RMS = k ~∇2T

=
k

r

∂

∂r
(r
∂T

∂r
) +

k

r2
∂2T

∂θ2

with Esol,RMS = VRMS
πr · G(ω, r). A particular solution T (r, θ) to this equation was

not found, mainly because of the variation of G(ω, r) with r. By assuming G(ω, r) =

G(ω), it is possible to find a particular solution: T (θ) = −σsolk ·
V 2RMS ·G(ω)

2

2π ( θ
2

π − θ).
The correctness of the approximation G(ω, r) = G(ω) was numerically verified for
f ≥ 130 Hz at σsol = 1.8 mS/m, for f ≥ 1.3 kHz at σsol = 18 mS/m, for f ≥ 13

kHz at σsol = 180 mS/m and for f ≥ 130 kHz at σsol = 1.8 mS/m. In other
words, it is required that f /σsol ≥ 72 (kHz.m)/S, otherwise the proposed particular
solution cannot be used. When this condition is satisfied, kr

∂
∂r (r ∂T∂r )� k

r2
∂2T
∂θ2

and the
approximation G(ω, r) = G(ω) is correct.

With this assumption, ~∇T = 1
r ·

∂T (θ)
∂θ ~aθ = −σsolkr ·

V 2RMS ·G(ω,r)
2

2π (2θπ − 1)~aθ. Starting
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from Coulomb equation like in [1], the force exerted on the fluid can be expressed as:

〈~FE〉 =
1

2
R

{[
(
σsol ~∇εsol − εsol ~∇σsol

σsol + jωεsol
)~E0

]
~E∗0

}
−

1

4
~E0 · ~E∗0 ~∇εsol

=

[
1

2

σsol · (σsol ~∇εsol − εsol ~∇σsol)
σ2sol + ω2ε2sol

−
1

4
~∇εsol

]
· E20

=
1

2

[
( 1εsol

~∇εsol − 1
σsol

~∇σsol)
1 + (ωεsol/σsol)2

−
1

2εsol
~∇εsol

]
· εsolE20

= −

[
− T
εsol

∂εsol
∂T + T

σsol

∂σsol
∂T

1 + (ωεsol/σsol)2
+

T

2εsol

∂εsol
∂T

]
︸ ︷︷ ︸

M(ω,T )

·
εsolE

2
RMS

T
· ~∇T

= −M(ω, T ) ·
εsolσsolV

4
RMSG(ω, r)4

2kπ3r3T
·
(

1−
2θ

π

)
· ~aθ

= −M(ω, T ) ·
εsolσsolV

4G(ω, r)4

8kπ3r3T
·
(

1−
2θ

π

)
· ~aθ

To compute the fluid speed, we use the Stokes equation: ~vE ≈ 0.13 · 〈~FE〉r2/η, as
Eq. 32 in [1]:

~vE(θ) = −0.13 ·M(ω, T ) ·
εsolσsolV

4G(ω)4

8kπ3rηT
·
(

1−
2θ

π

)
· ~aθ

≈ −5 · 10−4 ·M(ω, T ) ·
εsolσsolV

4G(ω)4

kηrT
·
(

1−
2θ

π

)
· ~aθ
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