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S1. Pumping effect of moving microsphere
Microspheres are moving through an aqueous solution in the Stokes flow regime. For a moving
microsphere the drag force is known as:

Fd = 6 π ηw rd um (S1.1)
where ηw is the viscosity of the liquid, rd the radius of the microsphere and um the velocity

of the microsphere.

Figure S1.1: a series of microspheres moving with a separation distance ∆x

This drag force of a series of moving microspheres is exerted on the fluid as shown in
Figure S1.1 and Equation S1.1, generating a pressure difference ∆p in the channel:

∆p = Fd

h w
(S1.2)

Where h is the height and w the width of the microchannel. This pressure difference is
generated in every unit cell having a length of ∆x. In flat microchannels the average fluid flow
(uc) can be written as [2]

uc = h2

12 ηw

∆p
∆x (S1.3)

with Equations S1.1, S1.2 and S1.3, the ratio between the average channel fluid velocity uc
and the microsphere velocity um can be calculated

ηm→c = uc

um
= π h rd

2 w ∆x (S1.4)

This approximation gives insight in the magnitude and scaling of the generated pumping
motion. The ratio of velocities does not depend on the viscosity. A wider channel will decrease
the flow rate, since there is more volume to displace. A higher channel will increase the flow
rate (less hydrodynamic resistance), the model, however, is only valid under the flat channel
approximation. Larger microspheres will displace more fluid, especially when they are placed
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close to each other (small ∆x). A minimum height and width of the channel is determined by
the size of the microspheres.

The geometries in our experiment are: channel height h = 23 µm, channel width w =
105 µm, microsphere radius of rd = 17 µm and a separation distance ∆x = 95 µm. This
results in a velocity ratio ηm→c of 6%.

S2. Simulation results of flow rate
Using COMSOL Multiphysics 4.2a the flow was simulated using a 2D model. The Fluid-
Structure Interaction physics module and incompressible flow neglecting the inertial terms
were used.

Figure S2.1: 2D simulation of the Stokes flow around a circle making a circular motion in the
microchannel. The color indicates the magnitude of the flow in horizontal direction, the arrows
indicate the direction of the flow.
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Figure S2.2: The output flow rate at the end of the simulated cell. This flow rate was cal-
culated by integrating the velocity over the right boundary and dividing by the boundary
length (1/w

∫
width ux dy). It can be seen that there is a clear asymmetry in the flow rate. This

simulation model results in a pumping efficiency ηm→c of 33%.

S3. Magnetic properties of the permalloy

Figure S3.1 shows the magnetic hysteresis loop of the 480 nm continuous permalloy (Ni80Fe20
film), similar to the one used to fabricate the disks. The peculiar shape of the loop is due to
stripe domains, which is typical for permalloy film of this thickness. These stripe domains are
caused by an out-of-plane component in the anisotropy [1], most likely caused by crystalline
growth with a preferred orientation. Even though the susceptibility is far from optimal, these
films reach a magnetisation of about 75% of their saturation value of 790(50) kA/m at the field
of 24 mT applied in the experiments.

−100 −75 −50 −25 0 25 50 75 100
−800

−600

−400

−200

0

200

400

600

800

Applied Field B [mT]

M
ag

ne
tiz

at
io

n 
M

 [k
A

/m
]

Figure S3.1: The magnetization curve of the permalloy disks, showing saturation at about
800 kA/m for fields above 50 mT.
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S4. Dipole field approximation
The stray field of magnetic disc of radius rd and thickness td, saturated to its saturation
magnetisation Ms, can be approximated by a magnetic line charge with charge density

λ = Mst cos θ [A], (S4.5)

where θ is as defined in figure S4.1. This approximation is correct for points that lie
much further from the edge of the disc than its thickness (r − rd � td). Integration over
infinitesimal charge packages λrddθ yields for the magnitude of the magnetic field B at location
r in figure S4.1

B = µ0Mst

2πrd

∫ π

0

(x− cos θ) cos θ
(x2 − 2x cos θ + 1)(3/2)dθ [T] (S4.6)

with x=r/rd. The integral was solved numerically, and compared to the field of a point
dipole with a moment equal to the volume of the disk times the saturation magnetisation

Bdip = µ0Mst

2rd

1
x3 . (S4.7)

The ratio between the line charge approximation and the dipole field is shown in figure S4.1.
For r > 3rd the error made by using a dipole approximation is less than 10%.
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Figure S4.1: The magnetic field of a saturated disc can be approximated by a line charge, with
a charge density proportional to cos θ.
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Figure S4.2: The error made by assuming the disc to be a dipole as a function of the distance
from the center of the disc.
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