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A. Interfacial rotaphoresis experiments 

Interfacial rotaphoresis was studied in experiments using different types of superparamagnetic 

particles. In most experiments, 2.8 m carboxyl M270 particles (Dynal Biotech) were used. In 

addition, we studied interfacial rotaphoresis with: 2.8 m streptavidin-coated M270 particles 

(Dynal Biotech); 2.6 m carboxyl Micromer particles (Micromod); 1.0 m carboxyl and 

streptavidin-coated MyOne particles (Dynal Biotech); and 500 nm carboxyl and streptavidin-

coated MasterBeads (Ademtech). Unless otherwise stated, particles were suspended in undiluted 

phosphate buffered saline containing 0.1% bovine serum albumin (BSA; Merck) and 0.02% 

Tween-20 (Thermo Scientific). Alternatively, particles were spiked in undiluted fetal bovine 

serum (Thermo Scientific).    

Particle suspensions (diluted to ~0.5 mg/mL) were pipetted in 38 L fluid chambers, 

assembled by attaching adhesive Secure-Seal Hybridization chambers (9 mm, height = 0.6 

mm; Electron Microscopy Sciences) to a glass cover slip (2222 mm2 from VWR) that was 

cleaned beforehand using isopropanol. On the non-adhesive side, the Hybridization chambers 

contained a 0.25 mm thick and transparent polycarbonate sheet containing two inlets to fill the 

38 L incubation chamber. The fluid chamber was imaged from this side with a Leica DM6000 

microscope. Prior to an experiment, the incubation chamber was filled with assay buffer without 

particles for 30 minutes to block the chamber walls with BSA in order to prevent non-specific 

adhesion of the particles to the surfaces. After that, the assay buffer was removed from the fluid 

chamber and the chamber was filled with the particle suspension. The fluid chamber was sealed 

using adhesive port seals as supplied together with the Hybridization chambers. 

To apply magnetic fields to the suspended particles, the fluid chamber was placed in a 

custom-build 5-pole electromagnet setup as shown in Figure 1b and Figure S1. Briefly, it 

consists of a quadrupole electromagnet (800 windings with 0.25 mm copper wires) to generate 

horizontal magnetic fields at the position of the fluid chamber (see Figure S1a,c). In addition, a 

separate electromagnet (1600 windings with 0.25 mm copper wires) is positioned below the 

center of the quadrupole electromagnet to allow for the generation of vertical fields. Using the 

quadrupole electromagnet, magnetic fields can be generated that rotate in-plane with respect to 

the bottom surface of the fluid chamber. By combining the bottom electromagnet with two 

opposite electromagnets of the quadrupole, magnetic fields can be generated that rotate out-of-

plane. To enhance the field line density within the incubation chamber, soft iron parts were 

implemented in the setup.  

The electromagnets were powered separately using a LabView-steered controller based on 

prescribed protocols of the separate currents which could be varied in time in terms of the 

amplitude, frequency and shape (i.e. sinusoidal). The magnetic field was calibrated using a 

Gauss meter (5100 series F.W. Bell) and corresponding data is shown in Figure S2. Details of 

the exact actuation protocol that was applied to obtain interfacial rotaphoresis are given in 

Supplementary Information C. 
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Figure S1. 5-pole electromagnet. A 5-pole electromagnet was used to apply fields in all directions. The 

setup consists of a quadrupole electromagnet and a separate electromagnet oriented orthogonal with 

respect to the center of the quadrupole. (a) Schematic drawing of the center of the setup, indicating the 

position of the magnets and the microscope with respect to the fluid cell. (b) Picture of the 5-pole 

electromagnet system. The quadrupole electromagnets are connected via a soft-iron yoke, to guide the 

field lines. (c) Picture of the fluid cell positioned within the center of the 5-pole electromagnet (compare 

to panel a). 
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Figure S2. Calibration data of the 5-pole electromagnet. Field calibration data of the 5-pole 

electromagnet measured using a Gauss meter (F.W. Bell). In each calibration figure the inset shows a 

cross-section of the electromagnets (showing two top magnets and the bottom magnet). The cross-

sectional views show the position (red rectangles) and the component (black arrows) of the measured 

field. The location of the incubation chamber is indicated by the black open rectangle. In the background 

of the cross-sectional views, the (relative) field strength is plotted (following a heat color map) as 

obtained from simulations using Comsol Multiphysics. The following field calibrations are shown in the 

different panels: (a) In-plane field dependence of the distance from the top magnets, ytop, for the case two 

opposite top magnets are powered in series at Itop = 0.4 A. (b) The in-plane field dependence to the current 

Itop at the position of the incubation chamber, for the case two opposite top magnets are powered in series. 

(c) Dependence of the out-of-plane field to the distance from the bottom magnet, ybottom, for the case that 

only the bottom magnet is powered at Ibottom = 0.2 A. (d) Dependence of the out-of-plane field to the 

current Ibottom at the position of the incubation chamber, for the case that only the bottom magnet is 

powered. 
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B. Interfacial rotaphoresis for different types of particles 

 

 
Figure S3. Microscope images of magnetic particle distributions after interfacial rotaphoresis for 

different types or functionalizations of particles. The details for the different cases are shown above each 

figure. Particles were suspended in PBS containing 0.1% BSA and 0.02% Tween-20. Also see 

Supplementary Videos 1, 6 and 7 for respectively M270 carboxyl particles in PBS containing 0.1% BSA 

and 0.02% Tween-20; MyOne Streptavidin particles in PBS containing 0.1% BSA and 0.02% Tween-20; 

and protein G-coated M270 carboxyl particles spiked in fetal bovine serum. 

 

Table S1. Overview of interfacial rotaphoresis applied to different types of particles. In all cases, applied 

weight percentages of magnetic particles were 0.3 mg/mL. Information on the particle size and magnetic 

properties were obtained either from the suppliers or from scientific literature[37]. The maximum induced 

velocity was obtained in a similar way as results in Figure 2d-f for particle concentrations of ~0.5 mg/mL. 

Particle type Particle diameter 

[m] 

Surface 

functionalization 

Saturation 

magnetization 

[emu/g] 

Maximum 

induced velocity 

[mm/s] 

Disaggregation 

observed 

Dynal            

M270 
2.8  0.1 Carboxylic acid 7.1  0.5 3.0  0.2 Yes 

Streptavidin  2.6  0.2 Yes 

Protein G  2.7  0.3 Yes 

Micromod      

Micromer 
2.6  0.1 Carboxylic acid 2.6  0.4 2.6  0.2 Yes 

Dynal          

MyOne 
0.99  0.04 Carboxylic acid 13  0.1 4.0  0.3 Yes 

Streptavidin  3.8  0.3 Yes 

Ademtech     

Masterbead 
0.5  0.1 Carboxylic acid 40  5  2.7  0.2 Yes 

Streptavidin  2.6  0.3 Yes 

 

 

  



7 
 

C. Particle behavior for different rotaphoretic field configurations 

To induce interfacial rotaphoresis, a straightforward field configuration is the application of a 

rotating field with a constant field amplitude and the normal vector of the plane of rotation 

parallel to the surface. However, the rotating field does not necessarily need to be constant, and 

the normal vector of the plane of rotation can also have a component along the surface normal. 

Therefore, we have studied the behavior of magnetic particles for different rotaphoretic field 

protocols, both in experiments and in numerical simulations. Specifically, we studied three 

different rotaphoretic field configurations (see Figure S4). The functional form of the modelled 

magnetic field was:   
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Basically, the fields in the y- and z-direction constitute the basic rotaphoretic field, governed by 

the frequency fzy. The field component in the x-direction was added to enable actuation in three 

dimensions (see Figure S4c). 

First, in case a constant magnetic field is applied that rotates about the x-axis, it was 

observed that particles formed into large linearly shaped aggregates that move over the surface 

(Figure S4a; also see Supplementary Video 8). Due to the large size, the formed aggregates did 

not show any visible rotational response to the rotating field. From these results, we conclude 

that this interfacial rotaphoresis protocol allows displacing particles over the surface, but the 

particles are not redistributed and rather form large multi-particle clusters.  

Based on an approach reported by Gao et al.[45], a second interfacial rotaphoresis protocol 

was tested with an out-of-plane component of the rotating field, Bz, that is larger than the in-

plane field component, Bx. After the application of the in-plane field Bx (orienting clusters 

parallel to the surface), the stronger out-of-plane field Bz induces repulsive magnetic dipole-

dipole interactions between the particles. While disaggregation of clusters was observed for 

small particle clusters (see simulation results in Figure S4b and Supplementary Video 9), for 

high local particle concentrations the particles remained ordered as long chains, as disaggregated 

particles tended to stay in the plane of the rotating cluster and did not sufficiently separate to 

prevent re-aggregation. As a result, no effective particle redistribution is obtained for this field 

configuration. 

To better spread out disaggregated particles over the surface, a rotaphoretic field was tested 

with field components in three dimensions instead of two. This was achieved by superimposing 

the rotating field with an alternating field parallel to the axis of rotation, i.e. along By. For 

example, when the out-of-plane rotating field is generated by the north and south electromagnet 

of the quadrupole (Figure S1) and the electromagnet below the fluid chamber, the east and west 

magnet are also powered using a smaller current and at a lower frequency. This causes the 

rotating field to change its direction over time: the normal vector of the plane of rotation has a 

component that is parallel to the surface and a time-dependent component along the surface 

normal, i.e., the field shows rotation combined with a wiggling motion orthogonal to the rotation 
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direction. As shown in Figure S4c and in Supplementary Video 3, this rotaphoretic field caused 

particle clusters to completely disaggregate, and evenly redistributed particles over the surface.  

 

 
Figure S4. Response of magnetic particles to different rotaphoretic field configurations. Data from 

experiments and numerical simulations on 2.8 m Dynal M-270 particles. The different field 

configurations are (see the left panels) (a) a constant rotating field about the x-axis; (b) a rotating field 

about the x-axis with a larger amplitude of the out-of-plane component, Bz, compared to the in-plane 

component, Bx; and (c) a rotating field with similarly varying amplitude, superimposed with an alternating 

field component orthogonal to the rotating field, i.e. along By. For all cases, a field gradient of 2 T/m was 

applied directed towards the surface, i.e. in the –z-direction. In the center part of the figure, top-view 

microscope images are shown at different particle densities during interfacial rotaphoresis. On the right, 

the effect of the different rotaphoretic protocols is shown in numerical simulations of 14-particle clusters. 
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D. Estimation of the ratio of torques in interfacial rotaphoresis 

We estimated the relative contributions of the hydrodynamic drag and magnetic torque acting on 

a chain of magnetic particles rotating near a surface.  

For a chain of particles rotating in an unbounded bulk fluid (i.e. without a nearby surface), 

Gao et al.[34] described a detailed expression for the dimensionless Mason number to estimate the 

ratio between hydrodynamic versus magnetic torques: 

    

3

T 2 2 2.4
0 0 2

R 16
N 1 ln N

p N

N

H
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

 
.      (S.1) 

Here  is the viscosity of the medium, N is the number of particles within the chain, 0 the 

permeability of free space and χp the particle susceptibility. Essentially, in case RT < 1 chains do 

not break, whereas in case RT > 1 chains show infinitely repeating break-and-reformation 

behaviour.  

In this Section, we estimate whether rotating chains will break up or remain rigid when they 

are colliding with a solid interface. The influence of the nearby surface is taken into account by 

an additional viscous drag on the particles due to the no-slip boundary. As explained in the 

methods section, the experiments were performed in a phosphate buffer (PBS = 10-3 Pas). 

Considering the rotating magnetic field, we applied a field with an average strength of 10 mT 

and a rotation frequency of 20 Hz. At this field strength, the used particles have a magnetic 

moment of m = (6.0 ± 0.3) × 10-14 Am2 as characterized in previous work[37] using a method 

called intra-pair magnetophoresis. From this work, it was found that the used magnetic particles 

already show some saturation in the magnetization at field strengths of 10 mT. 

Using these parameters, we estimate the ratio of torques both for a particle chain in the bulk 

and a particle chain near a surface (see Figure S5). Effectively, the nearby surface enhances the 

hydrodynamic drag on the particle chain. For a particle that is half its radius away from the 

surface, the hydrodynamic drag on the particle increases[48] by a factor of ~4. Assuming this 

value as an approximation of the effective viscosity experienced by the whole particle chain, we 

find in Figure S5 that (i) when near the surface, all particle chains will demonstrate breaking-

behavior, whereas (ii), when in the bulk, chains with lengths of less than 4 particles will not 

break.  

In particular, when a chain rotates near a surface, the particle colliding with the surface will 

experience a high drag force compared to the other particles. This is due to the hydrodynamic 

no-slip boundary condition, but also due to normal forces resulting from the hard-sphere 

collision with the surface. To maintain the rotation, the particle chain has to erect from the 

surface and rotate about the colliding particle. Effectively, the forces acting on the chain are 

comparable to the forces on a chain with an increased length (i.e., if the enhanced drag forces 

due to the nearby surface are neglected). More precisely, the axis of rotation shifts from the 

center of mass of the chain (with length N) to the center of the colliding particle. 

Correspondingly, the forces acting on the other end of the particle chain become comparable to a 

freely rotating chain with length 2N – 1. So, when a chain of N = 3 collides with the surface, the 

ratio of torques becomes comparable to a chain with a length of Neff = 2N – 1 = 5. Neglecting the 

enhanced drag due to the surface, such a chain (i.e., N = 5) will break up, while the original chain 
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(i.e., N = 3) will not break up in the bulk fluid (see Figure S5). Taking into account the enhanced 

drag, also for a two-particle chain it is expected that a collision with the surface will break the 

chain, whereas in the bulk fluid, this does not occur as RT < 1 in that case.   

Based on these considerations, the given configuration of magnetic and hydrodynamic 

forces should result both in the translation and gradual disaggregation of a particle chain that 

rotates in the vicinity of a physical boundary. 

 

 
Figure S5. Estimated ratio of hydrodynamic vs magnetic torques for rotating particle chains consisting of 

N particles in the bulk and near a surface. The computed errors in RT are composed of the relative error in 

the magnetic moment (~5%) and the applied field strengths (< 10%). 
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E. Experiments on particle-based capture of antibodies from a fluid 

The capture of targets from a fluid by magnetically actuated magnetic particles was studied using 

a model system comprising protein G-coated M270 particles which captured goat anti-mouse 

IgG antibodies labeled with fluorescent dye molecules (Alexa fluor 488 dye; Invitrogen). The 

magnetic particles were coated with recombinant protein G (Thermo Scientific) using standard 

EDC-NHS coupling chemistry. 

Experiments were conducted using the same fluid chambers as used in the interfacial 

rotaphoresis experiments. First, the fluid chambers were blocked by incubating 1 mg/mL BSA 

for 10 minutes. Subsequently, a 4 L magnetic particle suspension (4105 particles/L) was 

inserted by means of a pipette. During one minute, the particles were allowed to sediment to the 

bottom surface. Thereafter the fluid chamber was filled with the target solution (~34 L and 

diluted to 110 pM). The fluid chamber was closed and either placed in the center of the 5-pole 

electromagnet (see Figure S1) to actuate the particles, or under the microscope to measure the 

fluorescence. The incubation process was studied without magnetic actuation and with magnetic 

actuation. In the latter case, a repeated sequence was applied of rotating fields for target capture 

(500 s) and interfacial rotaphoresis to redisperse particles over the surface (80 s). The actuation 

for target capture consists of a continuously rotating magnetic field (20 mT, 0.2 Hz) rotating in-

plane with the surface (i.e. rotating about the z-axis), combined with field gradients (4 T/m) to 

move particles up and down through the fluid chamber (i.e. along the z-axis). 

 To measure the particle fluorescence, excitation light ( = 480  20 nm) was generated by 

an external light source (Leica EL6000) combined with a L5 (Leica) filter cube. Fluorescence 

(within the range of  = 52715 nm) was recorded using an EMCCD camera (Andor Luca S). 

For each measurement, images were taken from three random locations (with a field of view of 

142  107 m2).  

Images (e.g. Figure 3d) were processed using ImageJ software (http://rsbweb.nih.gov/ij/) 

and Matlab (Mathworks) to determine the average fluorescence intensity of the particles with 

respect to the background intensity. First, a binary image was made using a threshold to 

determine the area occupied by the magnetic particles. Subsequently Matlab software was used 

to determine the average intensity of the pixels corresponding to the particles or the background. 

As the intensity is averaged over the number of pixels, a single measurement is independent of 

the number of particles within a single field of view. 

To verify the specificity of the experimental model system, control experiments were 

conducted, in which the incubation was performed under turbulent mixing using a vortex mixer, 

as shown in Figure S6. 
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Figure S6. Control experiments for the specificity of the experimental model system: goat anti-mouse 

IgG and protein G-coated magnetic particles. The average particle fluorescence was measured after 30 

minutes of incubation of the reagents on a vortex mixer, except for the orange bar. Different surface 

functionalizations were tested: protein G; carboxyl (hydrophilic); sheep anti-mouse IgG and streptavidin. 

To determine the contribution to the fluorescence intensity due to the auto-fluorescence of the magnetic 

particles, a measurement was performed with a zero target concentration (i.e. the black bar). The error 

bars correspond to the standard deviation in the determined fluorescence intensity. 
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F. Supplementary Videos 

Supplementary Video 1: Disaggregation of small particle assemblies  

The disaggregation of small particle clusters by interfacial rotaphoresis with field components in three 

dimensions, corresponding to Figure 1c. The used particles were 2.8 m, Dynal M270 particles. The 

video shows that two-particle clusters rotate several times before finally disaggregating. Specifically, the 

applied rotaphoretic field consists of a field rotating out-of-plane at 20 Hz with an in-plane component Bx 

of 5 mT and an out-of-plane component Bz of 15 mT; and additionally an orthogonal field By of 2.5 mT 

with a sinusoidal shape (10 Hz). The total duration of the movie is about 2 seconds. 

Supplementary Video 2: Simulation of a 40-particle cluster with 3D interfacial rotaphoresis  

Simulated response of a 40-particle cluster to a rotaphoretic field with components in three dimensions. 

The simulated 3D rotaphoretic field consists of a field rotating out-of-plane at 20 Hz with an in-plane 

component Bx of 5 mT and an out-of-plane component Bz of 15 mT; and additionally an orthogonal field 

By of 2.5 mT with a sinusoidal shape (10 Hz). The particles in the numerical model correspond to 2.8 

m, Dynal M270 particles. It is observed that large clusters displace faster than small clusters, and that 

the particle cluster disaggregates almost completely. Note that the disaggregated particles spread out over 

the surface into all directions.  

Supplementary Video 3: Interfacial rotaphoresis by three-dimensional actuation 

This video shows the response of magnetic particles (2.8 m carboxyl Dynal M270) to a rotaphoretic 

field with components in three dimensions, corresponding to Figure 2a. Shown is a top-view of the west 

side of the fluid chamber. The particles start out aggregated as a large particle cluster near the 

electromagnet positioned west of the fluid chamber. A rotaphoretic field is applied consisting of a field 

rotating out-of-plane at 20 Hz with an in-plane component Bx of 5 mT and an out-of-plane component Bz 

of 15 mT; additionally we applied an orthogonal field By of 2.5 mT with a sinusoidal shape (with 10 Hz) 

to orient the field in the third dimension. The rotaphoretic field is applied to move particles to the magnet 

pole on the north side of the fluid chamber, so the particles are moving to the northeast. Subsequently the 

field direction is changed to move particles towards the east magnet pole, and lastly it is changed to move 

particles towards the south magnet pole. The particle behavior induced by this rotaphoretic field is 

substantially different than the behavior found in Supplementary Video 8, where the rotaphoretic field 

does not include a field component orthogonal to the rotating field. 

Supplementary Video 4: Velocity induced by 3D interfacial rotaphoresis 

This video contains the recorded images corresponding to the data in Figure 2d-e. Interfacial rotaphoresis 

is applied to a concentrated pack of particles with a diameter of ~1.5 mm. The maximum attained velocity 

is ~3 mm/s. The applied rotaphoretic field consists of a field rotating out-of-plane at 20 Hz with an in-

plane component Bx of 5 mT and an out-of-plane component Bz of 15 mT; and additionally an orthogonal 

field By of 2.5 mT with a sinusoidal shape (10 Hz). 
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Supplementary Video 5: Field-induced aggregation and drift of particles  

Recorded response of an initially homogeneous distribution of particles on the bottom surface of the fluid 

chamber to a magnetic field rotating in-plane with respect to the surface. The used field strength is B = 6 

mT and the rotation frequency was f = 0.1 Hz. Images were recorded at the center of the incubation 

chamber at a frame rate of 0.1 Hz, such that the drift and the clustering becomes more clearly visible, in 

contrast to the rotation behavior which cannot be seen in the video. The video shows 15 minutes of the 

experiment. 

Supplementary Video 6: Redistribution of 1 m-sized particles  

This video shows the application of a 3D interfacial rotaphoresis protocol to redistribute a cluster of 1 m 

sized particles (carboxyl Dynal MyOne) over the surface. Initially, the particles are aggregated as a large 

cluster with a size of ~1 mm. Interfacial rotaphoresis is applied in different directions (east, south, west, 

and north and so on) with durations of 20 s per direction. Besides observing complete redistribution of the 

particles, interesting magnetorheological behavior of the particles over the surface is observed when the 

interfacial rotaphoresis direction is switched, especially when one particle layer crosses another. The 

video additionally shows that interfacial rotaphoresis is almost not affected by air bubbles or other 

material within the fluid cell. The applied rotaphoretic field consists of a field rotating out-of-plane at 20 

Hz with an in-plane component Bx of 5 mT and an out-of-plane component Bz of 15 mT; and additionally 

an orthogonal field By of 2.5 mT with a sinusoidal shape (10 Hz). 

Supplementary Video 7: Interfacial rotaphoresis of protein G-coated particles in fetal 

bovine serum  

In this video, a 3D interfacial rotaphoresis protocol is applied to protein G-coated magnetic particles 

(2.8 m Dynal M270) spiked in undiluted fetal bovine serum (FBS). Initially, the particles are 

concentrated manually using a ferromagnet near the electromagnet positioned on the south-side of the 

fluid chamber. The experiment was conducted at room temperature (T = 293 K). The video shows a 

similar particle response as in other videos, although a small amount of clusters remains, indicating the 

enhancement in non-specific adhesion due to the bio-functionalized particle surfaces in combination with 

the biological fluid. The applied rotaphoretic field consists of a field rotating out-of-plane at 16 Hz with 

an in-plane component Bx of 5 mT and an out-of-plane component Bz of 15 mT; and additionally an 

orthogonal field By of 2.5 mT with a sinusoidal shape (5 Hz). 

Supplementary Video 8: Interfacial rotaphoresis by two-dimensional actuation 

This video shows the response of magnetic particles (2.8 m carboxyl Dynal M270) to a rotaphoretic 

field with components in two dimensions. The video (10 frames per second) shows a top-view of the west 

side of the fluid chamber. At the beginning of the video, the particles are aggregated into a large particle 

cluster and are close to the electromagnet west of the fluid chamber (< 1 mm). A rotaphoretic field is 

applied consisting of a magnetic field rotating out-of-plane at 20 Hz with an in-plane component Bx of 5 

mT and an out-of-plane component Bz of 15 mT (and By = 0). In the first part of the video, the rotaphoretic 

field is applied to move particles to the magnetic pole on the south side of the fluid chamber. So the in-
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plane field components are in the north-south direction. In the video, it is observed that the particle 

clusters split up in chain-like linear clusters (aligned with the in-plane magnetic field component Bx) and 

move towards the electromagnet on the south side of the fluid chamber at velocities of almost 1 mm/s. At 

10 s in the video, the rotaphoretic field is switched to move particles to the magnetic pole on the east side 

of the fluid chamber (i.e. the in-plane field is now in the east-west direction). This field is found to split 

up the larger particle chains into smaller particle chains, which start moving to the east side of the fluid 

chamber. Note that the smaller chains show out-of-plane rotation, in contrast to the behavior of the larger 

chains earlier in the video. It is observed however that the smaller particle chains re-group with each other 

into larger chains again, and thus remain aggregated. 

Supplementary Video 9: Simulation of a 40-particle cluster with 2D interfacial rotaphoresis  

The simulated response of a 40-particle cluster to interfacial rotaphoresis with field components in two 

dimensions. Simulated particles correspond to 2.8 m Dynal M270 particles. Similar behavior is 

observed as in Supplementary Video 8, but now disaggregated particles roughly end up on the same line 

behind the moving particle clusters. Similar behavior is also observed in experiments, e.g., see 

Supplementary Video 10. The simulated 2D rotaphoretic field consists of a field rotating out-of-plane at 

20 Hz with an in-plane component Bx of 5 mT and an out-of-plane component Bz of 15 mT. 

Supplementary Video 10: 2D interfacial rotaphoresis on smaller clusters  

This video shows the response of particle clusters consisting of several tens of particles (2.8 m 

carboxyl Dynal M270) to a rotaphoretic field with components in two dimensions on smaller clusters of 

particles. Similarly as found in simulations (see Supplementary Video 9), particle clusters are found to 

displace, disaggregate and remain in a line behind the moving particle clusters. Both cluster 

disaggregation and particle redistribution over the surface are incomplete due to the 1D spreading of the 

particle clusters. The applied rotaphoretic field consists of a field rotating out-of-plane at 20 Hz with an 

in-plane component Bx of 5 mT and an out-of-plane component Bz of 15 mT. The video was recorded at 

500 Hz. 
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