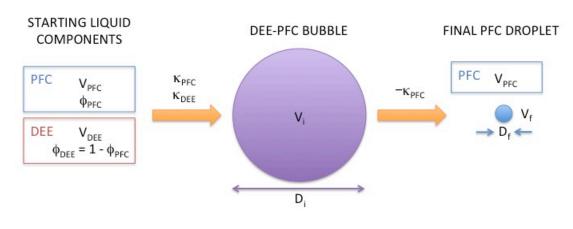
## **Supplementary Information**

## Size Reduction of Cosolvent-Infused Microbubbles to Form Acoustically Responsive Monodisperse Perfluorocarbon Nanodroplets


Minseok Seo<sup>1</sup>, Ross Williams<sup>1</sup>, and Naomi Matsuura<sup>2</sup>\*

2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada

263 McCaul St., Toronto, ON, M5T 1W7, Canada

Where:

## Determination of DEE volume expansion coefficient from liquid to gas phase:



V<sub>PFC</sub> = volume of PFC (liquid)

V<sub>DEE</sub> = volume of DEE (liquid)

 $\phi_{PFC}$  = starting volume fraction of PFC

 $\kappa_{PFC}$  = volume expansion coefficient of PFC

κ<sub>DEE</sub> = volume expansion coefficient of DEE

V<sub>i</sub> = volume of initial DEE-PFC bubble

V<sub>f</sub> = volume of final PFC droplet

D<sub>i</sub> = diameter of initial DEE-PFC bubble

D<sub>f</sub> = diameter of final PFC droplet

<sup>&</sup>lt;sup>1</sup>Physical Sciences, Sunnybrook Research Institute

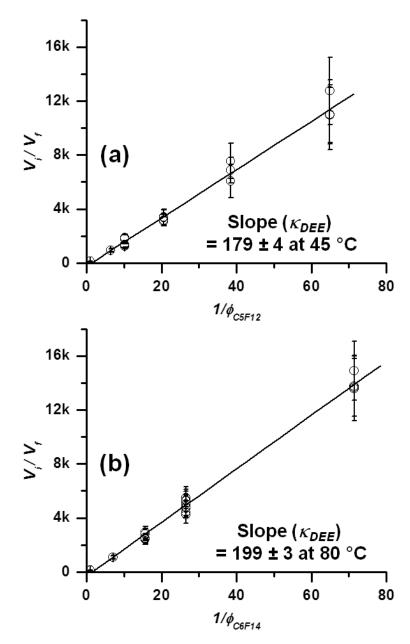
<sup>&</sup>lt;sup>2</sup>Department of Medical Imaging, University of Toronto

<sup>&</sup>lt;sup>3</sup>Department of Materials Science and Engineering, University of Toronto

<sup>\*</sup>E-mail: matsuura@sri.utoronto.ca

$$V_i = \frac{\pi}{6} D_i^3 = V_{PFC} \kappa_{PFC} + V_{DEE} \kappa_{DEE} + V_{mixture}$$

$$V_f = \frac{\pi}{6} D_f^3 = V_{PFC}$$


$$\frac{V_i}{V_f} = \kappa_{PFC} + \frac{V_{DEE}}{V_{PFC}} \kappa_{DEE} + \frac{V_{mixture}}{V_{PFC}}$$

Assuming that the volume of mixed PFC and DEE gas ( $V_{mixture}$ ) is small:

$$\frac{V_i}{V_f} = \kappa_{PFC} + \frac{1 - \phi_{PFC}}{\phi_{PFC}} \kappa_{DEE}$$

$$\frac{V_i}{V_f} = \kappa_{PFC} - \kappa_{DEE} + \kappa_{DEE} \frac{1}{\phi_{PFC}}$$

Thus, the volume expansion coefficient of DEE ( $\kappa_{DEE}$ ) can be extracted by plotting the experimental values of  $V_i/V_f$  versus the inverse of the volume fraction of PFC in the starting liquid, with the slope giving  $\kappa_{DEE}$  (Figure S1).



**Figure S1.**  $V_i/V_f$  of PFC droplets versus the inverse of the starting volume fraction of PFC ( $\phi_{PFC}$ ). DEE volume expansion coefficient ( $\kappa_{DEE}$ ) (a) at 45 °C (from C<sub>5</sub>F<sub>12</sub> data) and (b) at 80 °C (from C<sub>6</sub>F<sub>14</sub> data) were found from the slope of each plot.