Supporting information for Lab on a Chip:

Optical signature of erythrocytes by light scattering in microfluidic flows

D. Dannhauser,^a D. Rossi,^a F. Causa,^b P. Memmolo,^{a,c} A. Finizio,^c T. Wriedt,^d J. Hellmers,^e Y. Eremin,^f P. Ferraro^c and P. A. Netti^{a,b}.

^{*a*} Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.

^b Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy.

^c CNR-ISASI Institute of Applied Sciences & Intelligent Systems "E. Caianiello", via Campi Flegrei 34, 80078 Pozzuoli, Italy.

^d Institut für Werkstofftechnik, Badgasteiner Str. 3, 28359 Bremen, Germany.

^e Particle and Process Engineering, FB4, University of Bremen, Badgasteiner Str. 3, 28359 Bremen, Germany.

^f Faculty of Applied Mathematics and Computer Science, Moscow State University, Lenins Hills, 119992 Moscow, Russia.

We investigated the cell viability of mature erythrocytes in viscoelastic medium (phosphate-buffered saline with poly-ethylene oxide), by bright field microscope observations, before and after each light scattering measurement. In general, a noticeable difference between healthy (a) and unhealthy (b) erythrocyte morphology can be observed with such a simple microscope observation.

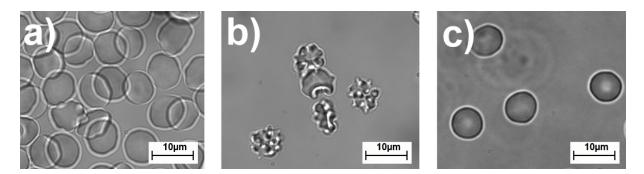


Fig. S1: Micrographs of erythrocytes in a solution of phosphate-buffered saline with poly-ethylene oxide. All cells have been observed by a bright field microscope using a 100x objective. a) shows healthy erythrocytes, while in b) unhealthy erythrocyte are illustrated. c) shows erythrocytes after the light scattering measurements.