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Mixing performance at different regions in the channel
Using DI water and fluorescein (DI water containing FITC-dextran) as a demonstration of mixing 
performance, we were able to examine under a flow rate of 30 µL/min, whether such a long channel can 
result in a complete, uniform mixing of the two solutions solely based on diffusion. As shown in Fig. S1, 
the mixing performance at different regions, including the beginning, the middle, and the end of the 
channel, was characterized in terms of fluorescence intensity. It is clear that when the piezoelectric 
transducer was switched OFF, only an incomplete, partial mixing of the solutions due to diffusion was 
observed under the flow rate condition. By contrast, once the piezoelectric transducer was switched ON, a 
complete, uniform mixing of the solutions was achieved throughout the channel, demonstrating the 
advantage of the active mixing of our acoustofluidic mixer. Given the flow rate condition and the solution 
(DI water) we used, the Reynold’s number was estimated to be roughly 800. Although t is higher than 
that in a typical microfluidic device, it still falls into the laminar flow regime. For the case of human 
clinical sputum samples, the precise calculation of Reynold’s number is more challenging because the 
viscosity of sputum varies across a wide range (103 ‒ 106 times the viscosity of water),1 depending on the 
patient status. Besides, no data is provided on the density of the sputum in the literature. Considering the 
extremely high viscosity of clinical human sputum samples, a longer mixing channel incorporating with 
active acoustic mixing mechanism is believed to be beneficial for processing human sputum samples.

Figure S1. Characterization of the mixing performance at different regions under a total flow rate of 30 
µL/min. (a) When the PZT was switched off: A side-by-side laminar flow pattern was first observed in the 
beginning of the long channel; partial, incomplete mixing due to diffusion was then observed at the 
middle and the end of the channel. (b) When the piezoelectric transducer was switched ON: Uniform, 
complete mixing was observed throughout the channel. (c) Plots of corresponding normalized fluorescent 
intensity across the width of channel at different regions. The normalized intensity profiles were 
characterized along the dashed white lines in the figure. Scale bar: 500 µm



Determination of the working frequency for the piezoelectric transducer
In order to determine the optimized the working frequency for the PZT before conducting liquefaction 
experiments, we swept the frequency with a 50 Hz increment from 1 kHz to 100 kHz to monitor and 
characterize the mixing performance at different frequencies. From the experimental results, we found 
that there were some frequencies at which mixing (incomplete or complete) of the two solutions were 
observed. Fig. S2 shows the mixing performance at the beginning of the channel when our device was 
tested with different input frequencies. The results suggest that when tested with a frequency of 5.50 kHz, 
our device achieved complete mixing with a uniform intensity profile, suggesting that 5.50 kHz may be 
the optimum working frequency for our sputum liquefier. To be more accurate, we further verify the 
mixing performance by calculating mixing index for each case. The mixing index was calculated using 
following equation:2 
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where Ii is the gray scale value at a given point, Im is the average gray scale value, and n is the total 
number of sampled points along the width of the channel. By using this equation, one can know that the 
mixing index is actually the standard deviation of gray scale values along the width of the channel. A 
mixing index of 0.5 represents completely unmixed fluids (i.e., distinct laminar flow), while a mixing 
index of 0.0 stands for completely mixed fluids. In this work, we chose a mixing index below 0.1 as 
acceptable mixing. The mixing indices were calculated to be 0.433, 0.047, and 0.118 for mixing 
performance obtained, respectively, using the frequency of 5.75 kHz, 5.50 kHz, and 5.25 kHz. The results, 
once again, suggest that 5.50 kHz is the optimized working frequency for our acoustofluidic device to 
uniformly mix two solutions.     

Figure S2. Characterization of the mixing performance at the beginning of the channel under different 
driving frequencies of the piezoelectric transducer. (a) A side-by-side laminar flow pattern was observed 
when the piezoelectric transducer was switched off. (b) 5.75 kHz: Incomplete mixing due to weaker 
acoustic streaming effect. (c) 5.50 kHz: Uniform mixing was observed. (d) 5.25 kHz: Excellent mixing 
was achieved, but not as complete as that obtained using 5.50 kHz. (e) Plots of normalized fluorescent 
intensity across the width of channel. The normalized intensity profiles were characterized along the 
dashed white lines in the figure. Scale bar: 500 µm
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