Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2015

Mechanical differences of sickle cell trait (SCT) and normal red

blood cells

Yi Zheng<sup>1,2</sup>, Mark A. Cachia, <sup>1</sup> Ji Ge<sup>1</sup>, Zhensong Xu<sup>1</sup>, Chen Wang<sup>4,5</sup>\*, and Yu Sun<sup>1,2,3</sup>\*

<sup>1</sup>Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON,

Canada

<sup>2</sup>Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON,

Canada

<sup>3</sup>Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON,

Canada

<sup>4</sup>Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON,

Canada

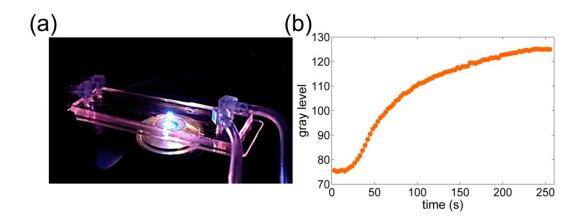
<sup>5</sup>Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON,

Canada

\*Corresponding authors:

Yu Sun

E-mail: sun@mie.utoronto.ca


Tel: 1-416-946-0549

Fax: 1-416-978-7753

Chen Wang

E-mail: cwang@mtsinai.on.ca

Tel: 1-416-586-4469



Supplementary Figure 1: Oxygen diffusion validation. (a) Tris (4,7-diphenyl-1,10-phenanthroline)ruthenium(II) dichloride complex dissolved in PBS was injected into the central channel of the device. Luminescent intensity was measured under illumination at 488 nm. (b) Gray-level intensity of an area (20  $\mu$ m  $\times$  20  $\mu$ m) near the midline of the central channel was analyzed via image processing. At 0 s, air (20%  $O_2$  + 80%  $N_2$ ) was switched to  $N_2$ . Luminescence saturated after around 200 seconds.