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Since the cross-sectional area of the channel in the entire focusing and spacing control region is uniform, the velocities can 

be replaced with the corresponding flow rates in the region 1 and 2 . Here, 
1t

u and 
2t

u are the superficial velocities in region 

1 and 2, respectively. 

In earlier work1 we have found that the mobility of a smaller object is higher as compared to that for a larger object. The 
spacing predicted using eqn. (S2) is the instantaneous spacing between the objects in region 2 when the trailing object just 

enters the region 2 and attains a steady velocity
2bu . This new velocity of the trailing object

2bu may be equal, lower or 

higher as compared to
2fu depending on whether the trailing object is of equal, higher or lower size, respectively as 

compared to the leading object. Also, for two objects of equal size but different deformability, the mobility of a more 
deformable object (higher deformability index) is higher as compared to that of a less deformable (lower deformability 
index) object.1 Thus, this spacing between the objects will remain fixed if the objects are of equal size (and deformability). 
However, this spacing will increase or decrease depending on whether the trailing object is larger (or less deformable) or 
smaller (or more deformable), respectively as compared to the leading object. In a limiting case, when a smaller object 
follows a larger object in region 2, thus spacing between the objects continues to decrease. Thus, in order to maintain the 
required spacing between a pair of objects which is larger than the sensing channel length senL , the sheath-to-sample flow 

rate ratio scf can be appropriately adjusted. An expression of the flow rate ratio scf required to maintain the required 

spacing is derived as follows,  
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where m and n are the exponents in the relation representing mobility of objects with the capillary number Ca  and size 

ratio  of the object, respectively (refer ESI on mobility of objects), 1g is the initial spacing of objects, r is the relative 

size ratio of objects (i.e. the ratio of size of the leading object to the trailing object in a pair) and L is the distance of the 
region 2 from the sensing channel. The eqn. (S5) can be numerically solved (using MATLAB) to determine the required 
flow rate ratio to maintain the desired spacing between a pair of adjacent objects. 

Focusing control  
 
The analytical solution for the velocity profile in case of flow through a rectangular channel is given by2, 
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The average velocity across the channel depth )( yu  Hz0  can be found out by integrating the velocity profile in the z-

direction (Ref. Fig. 2) as 
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The average velocity of the sheath fluid u across the channel width in the segments 
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channel which is used to focus the sample fluid is written as  



 

dy)y(u
D

1
u

2

W

D
2

Wd

0

d
0




                                                                       (S8) 

Thus, the flow rate of the sheath fluid in region 2 can be derived as follows, 
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and dD be the diameter of the smallest object in the sample to 

be focused by the sheath fluid. Similarly, the average velocity U and the flow rate of the sample fluid Q  which is focused 
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Finally, from eqn. (S9) and (S11), the flow rate ratio 
Q

q
f p  required for focusing of the objects (of different size) present 

in a sample is obtained as follows, 
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Sorting 

The resistance across a channel segment is obtained using the pressure drop and flow rate relationship for a rectangular 
microchannel as2, 
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where 0W and H are the channel width and height, respectively, iL  is the length of the channel segment and  is the fluid 

viscosity. The total resistance across the sensing channel varies due to the variable resistance ΔR which depends on the 
size and deformability of the object that arrives at the sensing channel.1 For a fixed input current I , the currents in 
different branches of the network can be found by simplifying the 

1sisenb RRR   - network into a R - R - R Y -network 

through suitable transformations, as shown in Fig. S2. The transformed resistances are obtained as,
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between droplets (i.e. 2g ) at various instant of time t is non-dimensionalised with respect to the initial spacing 1g between 

the droplets in region 1 and this non-dimensional spacing is denoted by *g . To calculate time t (presented as horizontal 

axis in Fig. S6, the instant of time when the leading droplet is about the enter region 2 is taken as t =0. 

As observed, in the case of a pair of droplets having equal size ratio (  0.75 and r =1), before the pair arrives at the 

spacing control region, the spacing *g remains fixed and does not vary with time (shown in zone A of Fig.S6(a)). 

However, at an instant of time when the leading droplet in the pair is about to enter the region 2 (i.e. at 0t  ), its speed 

along the channel is reduced which could be because it also attains a transverse velocity component due to the incoming 
sheath flow. While the leading droplet slows down, the trailing droplet still moves with the same velocity. Thus, there is an 

instantaneous reduction in the spacing between the pair of droplets *g at t =0. However, as soon as the leading droplet 

enters into region 2, it attains a higher velocity (due to the incoming sheath flow) as compared to the trailing droplet which 

results in an increase in the spacing *g between the droplets (shown in zone B of Fig.S6 (a)). The spacing *g between the 

droplets keeps on increasing until the trailing droplet also enters the region 2 . As observed, in this case, the increase in the 

spacing between the droplets *g takes place over a time period 0-1.875 ms. Once both droplets in a pair ( r =1) get into 

region 2 , the spacing *g between them does not change further downstream and remains fixed (shown in zone C of 

Fig.S6(a)), which is in accordance with the analytical model presented (eqn. S4). However, in a pair of droplets, if a 
smaller leading droplet is followed by a larger trailing droplet, the spacing between the droplets achieved in region 2 keeps 
on increasing which is because of mobility contrast between the smaller and larger droplets.  

Next, we consider a pair of droplets ( r 1.5) in which the leading droplet is larger (  0.75) and the trailing object is 

smaller (  0.5) and perform simulations to determine the droplet trajectories at a flow rate ratio f =1. In this case, in 

region 1, due to the mobility contrast between the smaller and larger droplets, the spacing between the droplets keeps on 
decreasing until the leading larger droplets is about to enter the region 2 (zone A of Fig. S6 (b)). The spacing between the 
droplets is minimum at the instant immediately before the leading droplet enters region 2. Once the leading larger droplet 
enters region 2, due to the incoming sheath flow, the spacing between the droplets keeps on increasing until the trailing 
smaller droplet enters region 2 (zone B of Fig. S6 (b)). Once the trailing smaller droplet enters the region 2, due to the 
mobility contrast between the smaller and larger droplets, the spacing between them keeps on decreasing downstream 
(shown in zone C of Fig. S6 (b)). This is a critical design criterion because the spacing between the droplets should be 

larger than the length of the sensing channel when the pair of droplets arrives at the sensing channel. The required spacing
*g  between a pair of droplets having relative size ratio 1r   can be predicted using eqn. (S5). For example, a pair of 

droplets with 51r . and initial spacing of 1g =40 µm will have a final spacing (before entering the sensing channel) less 

than the length of the sensing channel senL =100 µm at a flow rate ratio of scf 1.2. However, if we use a flow rate ratio 

of scf 3, the final spacing between the pair of droplets will be higher as compared to the sensing channel length (100 

µm).  
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