Supplementary Information for:

LabDisk with complete reagent prestorage for sample-toanswer nucleic acid based detection of respiratory pathogens verified with Influenza A H3N2 virus

F. Stumpf, *‡^a F. Schwemmer, ^{‡b} T. Hutzenlaub, ^a D. Baumann, ^a O. Strohmeier, ^a G. Dingemanns, ^c

G. Simons, ^c C. Sager, ^d L. Plobner, ^e F. von Stetten, ^{a,b} R. Zengerle^{a,b,f} and D. Mark^a

^a Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany

^b Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany

^c PathoFinder B.V., Randwycksingel 45, 6229 EG Maastricht, The Netherlands

^d Medical Care Center, Dr. Stein and colleagues, Wallstraße 10, 41061 Moenchengladbach, Germany

e Agrobiogen GmbH Biotechnologie, Larezhausen 2-3, 86567 Hilgertshausen, Germany

^f BIOSS – Centre for Biological Signalling Studies, University of Freiburg, 79110 Freiburg, Germany

‡ These authors contributed equally to this work.

* Corresponding Author, E-mail: Fabian.Stumpf@Hahn-Schickard.de, Tel: +49 761 203 73220

Content:

1) RealAccurate Quadruplex Respiratory qPCR panels

2) Rotational frequency protocol

1) RealAccurate Quadruplex Respiratory qPCR panels

Table	S1	Targets	of	the	seven	prestored	respiratory	pathogen	panels.	Primers	and	fluorescence
probe	for	the inter	ral c	onti	rol only	was prest	ored in react	tion cavity	1.			

Respiratory pathogen panel	Prestored in reaction cavity #	Targets		
		Influenza A virus		
DE0060 D DealAcourate Quadrumlay Influence	2	Influenza B virus		
Proso-k RealAccurate Quadruplex Innuenza	2	Influenza A H1N1		
		Internal Control		
		Coronavirus 229E		
DE0061 D DealAcourate Quadrumlay Carona	3	Coronavirus OC43		
Proget-k RealAccurate Quadruplex Corona		Coronavirus NL63/HKU1		
		Internal Control		
		Parainfluenza virus 1		
DE0062 D Deck counts Outstructure Dersightering	4	Parainfluenza virus 2		
Pro962-R RealAccurate Quadruplex Parainnuenza		Parainfluenza virus 3		
		Parainfluenza virus 4		
		Respiratory Syncytial Virus A		
DE0062 D Declé courses Que drug lou DCV/hMDV/	5	Respiratory Syncytial Virus B		
		Human Metapneumovirus A+B		
		Internal Control		
DE0064 D DeelAcourate Quadrumlay Disperirus	C	Rhinovirus/Enterovirus		
Pro964-K RealAccurate Quadruplex Killiovirus	o	Internal Control		
		Adenovirus		
PF0965-R RealAccurate Quadruplex Adeno/Boca	7	Bocavirus		
		Internal Control		
		Mycoplasma pneumoniae		
PF0966-R RealAccurate Quadruplex Atypical	0	Chlamydophila pneumononiae		
Bacteria	ŏ	Legionella pneumophila		
		Bordetella pertussis		

2) Rotational frequency protocol - Supplemental Table S2

For fully automated sample-to-answer detection of respiratory diseases in the LabDisk player all liquid handling steps and biochemical reactions are automatically processed by applying the specific rotational processing protocol.

Table S2 Applied rotational frequency protocol	
--	--

#	Rotation	Time	Notes	Action
1	10 Hz	30 sec	Centrifugal force acts upon sample	The Sample is transferred from the inlet chamber to the lysis/- binding chamber and rehydrates the prestored magnetic beads
2	55 Hz	60 sec	Centrifugal force induces burst pressure on 4 out of 5 stick-pack prestored liquid reagents	4 of the 5 nucleic acid extraction buffers (lysis, washing 1, washing 2 and elution) are transferred from stick-packs to their corresponding chambers of the nucleic acid extraction structure
3	2 Hz and 14 Hz		Alternation between 2 Hz and 14 Hz for 10 min with acceleration and deceleration rates of 7 Hz/s and 3 Hz/s	Repetitive acceleration and deceleration result in constant mixing during lysis procedure
4	80 Hz	60 sec	Centrifugal force induces burst pressure of the stick-pack containing the binding buffer	Binding buffer is transferred to the lysate
5	0 Hz – 10 Hz	300 sec	Alternation between 4 sec stops under stationary magnet to collect beads on one end of binding chamber (magnetic force dominates). At subsequent rotation of 10 Hz for 3 sec centrifugal force dominates and induces bead mixing.	5 minutes binding procedure facilitated by magnet induced bead mixing comprising repetitive stops, acceleration and deceleration
6	0	60 sec	GTM-mediated ²³ transport of magnetic beads	Transfer of the magnetic beads from the lysis- /binding chamber to the washing chamber 1
7	2 Hz and 14 Hz		Alternation between 2 Hz and 14 Hz for 3 min with acceleration and deceleration rates of 7 Hz/s and 3 Hz/s	Repetitive acceleration and deceleration result in constant mixing of the magnetic beads in the washing buffer 1
8	0	60 sec	GTM-mediated ²³ transport of magnetic beads	Transfer of the magnetic beads from the washing chamber 1 to the washing chamber 2
9	2 Hz and 14 Hz		Alternation between 2 Hz and 14 Hz for 3 min with acceleration and deceleration rates of 7 Hz/s and 3 Hz/s	Repetitive acceleration and deceleration result in constant mixing of the magnetic beads in the washing buffer 2
10	0	60 sec	GTM-mediated ²³ transport of magnetic beads	Transfer of the magnetic beads from the washing chamber 2 to the elution chamber
11	0	1 sec	Heat up and hold temperature at 50 °C	Nucleic acid release is done at 50 °C
12	2 Hz and 14 Hz		Alternation between 2 Hz and 14 Hz for 5 min with acceleration and deceleration rates of 7 Hz/s and 3 Hz/s	Mixing of beads in elution chamber. The nucleic acid is released into the liquid phase
13	0	60 sec	GTM-mediated ²³ transport of magnetic beads	Transfer of the magnetic beads from the elution chamber to the washing chamber 2 so that magnetic beads don't affect following microfluidic procedure
14	0	1 sec	Cool down to room temperature	Cool down after nucleic acid release is finished
15	80 Hz – 0 Hz	60 sec	Process is described in detail in our previous work ⁵²	Pumping of nucleic acid containing elution buffer to the collection chamber by centrifugo-dynamic inward pumping
16	10 Hz	40 sec	Centrifugal force acts upon elution buffer	Elution buffer is transferred to aliquoting structure and separated into 8 subvolumes of 10 μ l each
17	20 Hz	30 sec	Centrifugal force acts upon elution buffer	Aliquots of 10 μ l are transferred into the eight reaction cavities inducing rehydration of the therein prestored lyophilisates and primer and fluorescence probes.
24	6 Hz	8100 sec	Thermocycling starts under rotation. Reverse transcription: 50 °C for 1800 sec Initial denaturation: 95 °C for 300 sec 45 thermocycles: Denaturation: 94 °C for 5 sec Annealing and elongation: 55 °C for 40 sec	Real-time RT-PCR amplification with optical detection of fluorescence signal in the reaction cavities.