Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

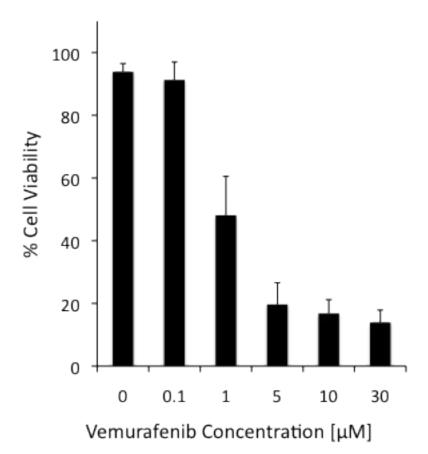
Microfluidic Co-Cultures with Hydrogel-Based Ligand Trap to Study Paracrine Signals Giving Rise to Cancer Drug Resistance

Authors:

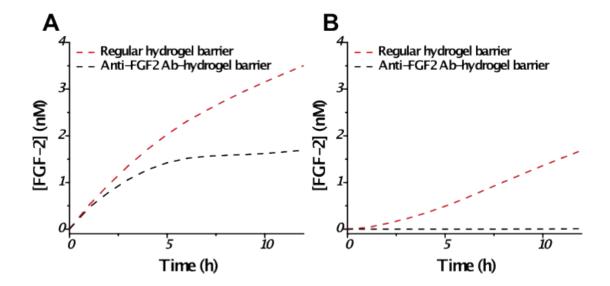
Dipali Patel ^a, Yandong Gao ^a, Kyungjin Son ^a, Christian Siltanen ^a, Richard M. Neve ^b, Katherine Ferrara ^a, Alexander Revzin ^{a,*}

Affiliation:

- ^a Department of Biomedical Engineering, One Shields Ave., University of California, Davis, CA, 95618
- ^b Department of Discovery Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.


Supplementary Figure Legends

Supplementary Figure 1. Dose-dependent response curve of A375 cells to vemurafenib in microchambers. Cell viability assays show cells starting to die off after exposure to 1 μ M of vemurafenib.


Supplementary Figure 2. Changes in average FGF-2 concentration inside the cell channels having regular hydrogel barrier (red) or anti-FGF antibodies-containing hydrogel barrier (black):

(A) resistant cell channel and (B) sensitive cell channel. Over a 12-hour period, there is a ~3-fold decrease in FGF-2 concentration in resistant cell chamber and undetectable levels of the protein in the sensitive cell chamber.

Supplementary Figure 1

Supplementary Figure 2

