Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2015

Microfluidic Assessment of Mechanical Cell Damage by Extensional Stress

Electronic Supplementary Information

Young Bok Bae^a, Hye Kyeong Jang^b, Tae Hwan Shin^{c,d} Geetika Phukan^c, Thanh Tinh Tran^b, Gwang Lee^c, Wook Ryol Hwang^{*b} and Ju Min Kim^{*a,e}

a Department of Energy Systems Research, Ajou University,
Suwon 443-749, Republic of Korea
b School of Mechanical Engineering, Research Center for Aircraft Parts Technology,
Gyeongsang National University,
Jinju 660-701, Republic of Korea.
c Department of Physiology and Department of Biomedical Sciences,
Ajou University School of Medicine, Suwon 443-380, Republic of Korea
Suwon 443-749, Republic of Korea
d Department of Molecular Science and Technology,
Ajou University, Suwon 443-380, Republic of Korea
e Department of Chemical Engineering, Ajou University,
Suwon 443-749, Republic of Korea

(Last Updated: November 26, 2015)

*To whom correspondence should be addressed.

*a,eE-mail: jumin@ajou.ac.kr; Fax: +82-31-219-1612; Tel: +82-31-219-2475
*b Email: wrhwang@gnu.ac.kr; Fax: +82-55-772-1620; Tel: +82-51-772-14628

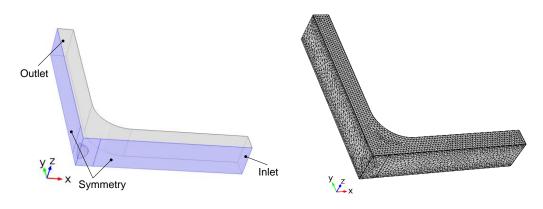
List of Supplementary Information

SI Text 1. Detailed information of numerical simulation.

SI Table S1. Numeric data for cell viability tests (6 repeated experiments) which were presented in Fig. 5 in the main text.

SI Movie 1. Sample movies for cell deformation in the cross-slot channel, which were used to obtain averaged deformability (Fig. 3): 30 fps (playback rate) at flow rate $\leq 500~\mu L/hr;$ 15 fps at flow rate = 1000 $\mu L/hr;$ 8 fps at flow rate = 2000 $\mu L/hr;$ 5 fps at flow rate = 3000 $\mu L/hr.$

SI Text 1. Detailed information of numerical simulation.


In this work, incompressible Newtonian flows were simulated using a commercial computational fluid dynamics software (COMSOL Multiphysics®) with the following the fluid properties:

■ Fluid properties:

Density: 1000 kg/m³
 Viscosity: 62 cP

The boundary conditions and finite element meshes, which were used for numerical simulations, were presented below:

■ Boundary conditions and finite element meshes:

- Outlet: $P_{out} = 0$
- ◆ Symmetry
- ◆ Others: No slip

■ Mesh information

Degree of freedom: 405,405Number of element: 76,197

where \dot{m} is mass rate at the inlet, ρ is fluid density and \dot{Q} denotes volumetric flow rate. The pressure at the outlet (P_{out}) was set to 0.

SI Table S1. Numeric data for cell viability tests (6 repeated experiments) which were presented in Fig. 5 in the main text.

Viability of CHO-k1 cell

	500 μL/hr		1000 μ L/hr		1500 μ L/hr	
	Control	Experiment	Control	Experiment	Control	Experiment
1st	90.9	89.7	89.1	86.2	90.0	82.0
2nd	88.2	87.7	91.6	85.2	85.8	81.5
3rd	88.4	88.2	89.7	86.0	87.4	84.0
4th	88.6	90.2	93.5	86.7	92.2	86.0
5th	93.3	96.0	95.1	92.2	92.8	87.4
6th	87.7	84.6	86.8	83.1	85.6	76.2