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Figure S1

Figure S1. Schematic representation of the layers of patterned paper and toner used to fabricate
the titration device.



Figure S2
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Figure S2. Plot of distance wicked by the fluid versus time for two-ply channels that were held
either vertically or horizontally as they wicked liquid from a reservoir. Data points represent the
mean of nine measurements and the error bars represent one standard deviation from the mean.
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Figure S3. Plot of distance wicked by the fluid versus time for single-ply and two-ply channels
under 100% and 35% RH. Data points represent the mean of 9 measurements and error bars were
omitted for clarity, but can be seen in Figure 2. The dashed lines represent the modeled results
using the magnitudes for » and ¢, in Table 1.



Figure S4
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Figure S4. Schematic diagram of the cross-section of a two-ply channel modelling the two
layers of paper as bundles of uniform capillaries of radius »” and the gap between the layers of
paper as a layer of capillaries of radius R. The effective pore radius for the two-ply channel » can
be estimated by calculating the cross-sectional-surface-area-weighted average of the capillary
radii in each layer of paper and in the gap.
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Figure S5. Schematic of a longitudinal section of single-ply and two-ply channels wicking liquid
from a reservoir.



Derivation of an equation to describe wicking in a paper-based porous channel including a term for
loss of fluid due to evaporation.

Starting with Darcy’s law:

where P is pressure (N/m?), z is distance (m), 4 is dynamic viscosity (Ns/m?), v is velocity (m/s) and k is
interstitial permeability (m?), / is the position of the fluid front (m) and t is time (s).

We write conservation of mass as:

where g, (m/s) is loss of fluid due to evaporation in terms of volume per second per unit area from each
face of the channel, the factor of 2 accounting for the fact that evaporation is occurring from the two
faces of the channel, h (m) is the cross-sectional thickness of the channel and ¢ is the porosity. For a
two-ply channel, the term ®h must account for the two layers of paper, with porosity ¢, and the gap,
with a porosity of 1 (Figure S5).

We take the partial derivative of (1) to obtain:
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then substitute (2) into (3) to obtain:
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and integrate (4) twice with respect to z to give:
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where C; and C, are constants.

We also know that at z=0, P=0, and at z=l(t), P=-2ycos§/r (from Young-Laplace where yis surface tension
(N/m), @is contact angle and r is effective pore radius of the capillaries in paper), so we can find C; and
CZ in (5)'
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We can substitute (6) into (5) to obtain:
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Next we take the partial derivative of P with respect to z in (7) to find speed of the interface dl/dt:
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and we rearranged (9) to find:
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Solving (10) we find:

2q0
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where we have used /(0)=0.

We also know that for a simple channel, such as a circular pipe, interstitial permeability can be
approximated as:?
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where r (m) in this case is the effective pore radius of the channels in a piece of paper.

Substituting (12) into equation (11) gives our final equation:
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For fitting the experimental results in Kaleidagraph, we set ¥ = 0.0728 N/m u=0.001 Ns/m? and 6 =0,

For a single-ply channel, we estimated ¢ = 0.34 and h = 150 um_ For a two-ply channel, the term
¢h=2(0.34)(150 ym) + 10 ym =112 pm,

In the limit where g, goes to zero, we can use a Taylor series to make the following approximation:
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Substituting (14) into (13) gives:

which is the Lucas-Washburn equation.
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