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This supplementary information contains seven additional figures (Figures S1-S7) 

describing: 1) the 3D printing of cells, 2) rapid prototyping of the 3DNSCs, 3) scanning electron 

micrograph characterization of 3D printed microchannels on protein-coated substrates, 4) 

comparison of viral transport imaging on different substrate materials, and 5) association of 

Schwann cells and axons within microchannels. 

 

1) Cell printing: Cell suspensions of hippocampal and SCG neurons were prepared 

following dissociation procedures. Cell suspensions of Schwann and epithelial cells were prepared 

by resuspending actively growing cells in fresh growth medium. The suspension was then 

aspirated to further break up cell clusters. Following preparation, the cell suspensions were loaded 

into extrusion syringes. Prior to printing, the tips were incubated in a blocking solution consisting 

of 10% bovine serum albumin (BSA, Sigma) in DPBS to prevent cell adhesion to the inner wall 
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of the tip. Cell suspensions were then printed into the individual chamber wells. As shown in 

Figures S1a-b, a complete 3DNSC involves an assembled substrate (Figure S1a; corresponding 

computer model) and tri-chamber (Figure S1b; corresponding computer model). As shown in 

Figure S1c, cell suspensions were printed using a 27 GA tapered plastic tip. Following printing, 

cell viability was analysed using a vital dye (Erythrosin B stain, ATCC). The viability was 

calculated as the number of live cells / the total number of cells × 100. Cells dispensed with a 

standard 1 ml pipette served as the positive control. Cell suspensions containing sodium azide 

served as the negative control.  

As shown in Figure S1d, we found that the micro-extrusion process caused only small 

decreases in cell viability among both the primary cells and cell lines. 3D printed primary 

hippocampal and SCG neurons were 96% and 88% viable, respectively, while 3D printed Schwann 

cells and PK-15 cells were 97% and 96% viable, respectively. We attribute the mechanism of cell 

death to extrusion-associated shear stress, as a Newtonian fluid moving through a tapered pipe 

experiences losses according to the following relation:1 
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where Δp is the pressure drop, L is the length of the extrusion tip, μ is the viscosity, Q is the flow 

rate, and R(L) is the length dependent radius. Viability studies performed using dead cells served 

as negative controls. Importantly, this result suggests that 3D printing could play a role as a 

valuable tool for the automated assembly of neurons, glia, and terminal cells. 
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Figure S1. a) Computer model of the inter-chamber 3D printed microchannels for axonal guidance 

(typical channel width = 350 μm). b) Computer model of the 3D printed tri-chamber for cell 

isolation and organization. c) Photograph showing the printing of a cell suspension (extruder tip 

length (Lt) and tip diameter (Dt)). d) Viability studies on printed cells including hippocampal 

neurons, superior cervical ganglia (SCG) neurons, Schwann cells, and PK-15 cells (epithelial cells). 

 

2) Rapid prototyping: In Figures S2-S5, we highlight the flexibility provided by 3D 

printing to customize and prototype the chip design in terms of altering: 1) the microchannel size 

(200–400 μm wide parallel channels, as shown in Figures S2a-c), 2) the microchannel substrate 

material (glass), as shown in Figure S3a, 3) the 3D printed microchannel material 
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(polycaprolactone; data not shown), 4) the microchannel geometry, as shown in Figure S3b, which 

enabled the convergence of axons onto a pre-integrated TEM substrate (see Section S3-Electron 

Microscopy for information on preparation and handling), and 5) the tri-chamber geometry 

(symmetric and asymmetric) as shown in Figures S3c and d, respectively. We also include videos 

of the microchannel and tri-chamber printing processes as shown in Supplementary Movies S1 

and S2, respectively. Such flexibility provided by 3D printing enabled the nanoscale 

discrimination of single axons, which has future importance for the imaging of synapses and other 

close cell-cell contacts in the nervous system. 
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Figure S2. Representative scanning electron micrograph of the 3D printed microchannels, 

showing a filament of 3D printed material on a protein-coated substrate, which creates a network 

of parallel coated channels for cell confinement and axonal guidance with layer spacing of (a) 200, 

(b) 300, and (c) 400 μm. 
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Figure S3. a) Demonstration of microchannel printing on alternative substrate materials (glass; 

inset shows assembled tri-chamber on a glass-based 3DNSC; inset scale bar = 10 mm). b) 

Photograph of substrate-integrated TEM grid chips on glass substrates, with converging 

microchannels and direct printing onto pre-integrated TEM scaffolds. c) 3D printed symmetric top 

tri-chamber (silicone) for integration with either plastic or glass substrates. d) 3D printed 

asymmetric top tri-chamber (silicone). 
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3) Electron microscopy: Samples were prepared for electron microscopy as previously 

described.2,3 Immediately after fluorescence microscopy, axons were fixed in 4% PFA and 2.5% 

glutaraldehyde in Sorenson's buffer (0.1 M sodium phosphate buffer, pH 7.4) for 6 hr. Samples 

were then rinsed in clean buffer, post-fixed with 1% OsO4 in Sorenson's buffer for 30 min, and 

rinsed again. Axons were permeabilised by rinsing in 15% ethanol (v/v in water) followed by 

staining with 2% uranyl acetate in 15% ethanol for 5 min. Samples were then rinsed with 15% 

ethanol, and dehydrated in a series of ethanol washes: 30%, 50%, 70%, 90% (5 min each), followed 

by five washes in 100% ethanol. Samples were rinsed twice for 10 min each in 

hexamethyldisilazane, and allowed to air dry overnight. Samples were imaged on a Philips CM100 

electron microscope at the Imaging and Analysis Centre of the Princeton Institute for the Science 

and Technology of Materials. 

The 3D printing approach enabled us to readily modify the platform design in order to more 

closely interrogate particular components of the nervous system (e.g. single axons) as shown in 

Figures S4 and S5. Cellular communication in the nervous system occurs via axons, so it is critical 

to demonstrate that the 3DNSC design could be modified to accommodate advanced imaging of 

axons. In general, it is challenging to control and optimize the growth of axons on materials for 

advanced imaging applications, such as grids for electron microscopy applications. Thus, the 

microchannel design was modified from a parallel to a converging configuration in order to guide 

the axons on a substrate-integrated transmission electron microscopy (TEM) grid (see Figure S3b). 

As shown in Figure S4a, the TEM-modified peripheral 3DNSCs were constructed by 

functionalizing chamber 1 with SCG neurons and integrating a TEM grid in chamber 3. Chamber 

2 was left empty to enable high resolution imaging of the converging axonal network, though 

Schwann cells could be added in future applications. The converging microchannel configuration 
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effectively concentrated axons in the TEM grid region (Figure S4b). The axons also spontaneously 

grew on top of the TEM grid itself, as shown in Figure S4c. We observed a concentration of axons 

of ca. 15 axons per TEM grid element (100 × 100 μm2). As shown in Figure S4d, this 3D printing 

approach enabled the high resolution imaging of single axons using electron microscopy, via this 

ability to interface biological systems (e.g. axons) and materials (e.g. TEM grids). 
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Figure S4. a) Micrograph of a customized 3DNSC with a converging microchannel design, which 

concentrates axonal growth towards a substrate-integrated TEM grid. b) Enlarged view 

corresponding to (a) showing guidance of axons to the substrate-integrated TEM grid. c) Enlarged 

view corresponding to (b) showing axons which have grown spontaneously on top of the TEM 

grid. d) Electron micrograph of a single axon which has been guided onto the TEM grid by the 

converging microchannel design. 



    

10 
 

4) Viral imaging: In addition to the enhanced imaging of nervous system components (e.g. 

axon pathways) using electron microscopy as shown in Figure S4, the ability to rapidly prototype 

3DNSC designs according to the strategies shown in Figure S3 also enables enhanced 

fluorescence imaging applications. Specifically, we compare the signal quality in terms of signal-

to-noise ratio of total internal reflectance fluorescence microscopy measurements taken from 

3DNSC’s fabricated both on glass (Figures S5a and b) and plastic (Figures S5c and d). The results 

shown in Figure S5 show that significant improvement in signal-to-noise ratio was achieved on 

glass substrates which enabled the high resolution real-time tracking of individual virus particles 

(indicated by white arrows in Figure S5). 
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Figure S5. Comparison of fluorescence images of viral transport in infected SCG neurons on glass 

(a and b) and plastic (c and d) substrates at t = 0 and 2 s, highlighting the ability to optimize the 

measurement conditions with the flexibility in material assembly provided by the 3D printing 

process. 
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5) Schwann Cell-Axon Association Analysis: The associated phase contrast micrographs 

of Figure 2 are presented in Figure S6. Figures S6c and S6f were maintained to preserve the multi-

channel viral fluorescence, primarily of a single type, indicating infection by single viral particles. 
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Figure S6. a) Schematic of a peripheral 3DNSC showing three primary components: (1) the 

neuronal component and source of axons containing SCG neurons in chamber 1, (2) the peripheral 

nerve component containing axons and Schwann cells in chamber 2, and (3) the terminal cell 

junction component containing axon termini and epithelial cells in chamber 3. b) Micrograph 

showing three parallel microchannels of SCG neurons and axons in chamber 1. c) Micrograph 

showing three parallel channels of peripheral nerve fibres containing organized self-assembled 

networks of axon-associated Schwann cells (tri-colour PRV Brainbow strain; see Materials and 

methods section) in chamber 2. d) Micrograph showing three parallel channels of axon termini and 

epithelial cells in chamber 3. e) Single channel image of neurons from (b). f) Single channel image 

of Schwann cells from (c). g) Single channel image of axon termini and epithelial cells from (d). 
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We also analysed the association between the Schwann cells and bundling axons in the 

microchannels. As shown in Figure S7, repeated studies at relatively lower Schwann cell densities 

enabled the characterization of Schwann cell distributions in channels both with and without axons 

present (Figures S7a and S7b, respectively). Figure S7c shows that Schwann cells were randomly 

distributed across the entire channel when axons were absent, but were localized when axons were 

present to the region of the axon. This result suggests that Schwann cells associate with axons, 

although the mechanism is beyond the scope of this work. 
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Figure S7. Representative phase contrast micrographs of Schwann cell microchannel growth both 

without (a) and with (b) axons present. c) Histogram of the Schwann cell microchannel distribution, 

where y is the distance from the top channel wall and W is the channel width. 
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Movie S1. Movie of the microchannel printing process on glass substrates (× 16 speed). 

 

Movie S2. Movie of the tri-chamber printing process (× 64 speed). 
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