SUPPORTING INFORMATION

Forward electrohydrodynamic ink-jet printing of optical microlenses on microfluidic devices.

V. Vespini,^a S. Coppola^a , M.Todino^b , M. Paturzo^a , V. Bianco^a , S. Grilli^a and P.Ferraro^{a*}

Figure S1. Interferometric set-up adopted to characterize the lens optical properties. (a) Mach-Zehnder interferometer. The beam emitted by a Continuous Wave (CW) laser with wavelength λ =632.8nm is first split in two parts, constituting the reference and the object arm of the interferometer. Both encounters a 5x microscope objective on their path toward the sensor (a 1024x1024 CCD camera with pixel pitch $\Delta x=\Delta y=4.4\mu m$). The object beam is directed toward the object, namely the microfluidic chip where a sample micro-lens is deposited, and then recombines to the reference in the acquisition plane in order to produce an interference pattern, i.e. the digital hologram. M: Mirror. BS: Beam Splitter. BC: Beam Combiner. MO: Microscope Objective. S: Sample plane. (b) Recorded Digital Hologram.

Polynomial order	Name	Shape	a/λ	Abs(a _p /a ₅) [%]
P=1	constant term	1	28.9	/
P=2	x-tilt	ρcosθ	-0.38	2.75
P=3	y-tilt	ρsinθ	1.64	12.0
P=4	astigmatism	ρ²cos2θ	0.12	0.86
P=5	defocus	2ρ²-1	-13.7	100
P=6	astigmatism	ρ²sin2θ	0.28	2.04
P=7	trefoil	ρ ³ cos3θ	-0.07	0.50
P=8	coma, x axis	(3ρ ³ - 2ρ)cosθ	-0.29	2.15
P=9	coma, y axis	(3ρ ³ -2ρ)sinθ	-0.12	0.87

	P=10	trefoil	ρ³sin3θ	0.03	0.26	
--	------	---------	---------	------	------	--

 Table S1. The first ten Zernike radial functions, their common names and the corresponding coefficients.

_