A simple multi-array stretching device to induce inflammatory responses of vascular endothelial cells

Jiasheng Wang ${ }^{\text {a }}$, Beiyuan Fan ${ }^{\text {a }}$, Yuanchen Wei ${ }^{\text {a }}$, Xingmei Suo ${ }^{\text {b* }}$, Yongsheng Ding ${ }^{\text {a* }}$ Affiliation:
a College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
b School of information engineering, Minzu University of China, Beijing, 100081, China

Section S-1

The calculation of deformation of spherical cap (the diameter of each culture well is $\mathbf{6} \mathbf{~ m m}$)

Figure S-1. A spherical cap diagram

A spherical cap is the region of a sphere which lies above (or below) a given plane. Let the sphere have radius R, then the volume V of a spherical cap of height h and base radius a is given by the equation of a spherical segment,

$$
\begin{equation*}
V=\pi h^{2}\left(R-\frac{h}{3}\right) \tag{S-1.1}
\end{equation*}
$$

The surface area of the base circle gives

$$
\begin{equation*}
S_{0}=\pi a^{2} \tag{S-1.2}
\end{equation*}
$$

The curved surface area of the spherical cap gives

$$
\begin{equation*}
S_{i}=2 \pi R h \tag{S-1.3}
\end{equation*}
$$

Let ε denote the change in surface area on the middle layer between the stretched and unstretched status. The relationship can be described as by

$$
\begin{equation*}
S_{i}=(1+\varepsilon) S_{0} \tag{S-1.4}
\end{equation*}
$$

Combining the formula 2.2, 2.3 and 2.4, the equation gives

$$
\begin{equation*}
2 R h=(1+\varepsilon) a^{2} \tag{S-1.5}
\end{equation*}
$$

Using the Pythagorean Theorem gives

$$
\begin{equation*}
(R-h)^{2}+a^{2}=R^{2} \tag{S-1.6}
\end{equation*}
$$

Combining the equations 2.5 and $2.6, \mathrm{R}$ and h can be solved as

$$
\begin{equation*}
R=\frac{a(1+\varepsilon)}{2 \sqrt{\varepsilon}} \tag{S-1.7}
\end{equation*}
$$

$$
\begin{equation*}
h=a \sqrt{\varepsilon} \tag{S-1.8}
\end{equation*}
$$

Substituting R and h , the equation (2.1) can be rewritten

$$
\begin{equation*}
V=\frac{1}{6} \pi a^{3}(3+\varepsilon) \sqrt{\varepsilon} \tag{S-1.9}
\end{equation*}
$$

Section 2

Table S-1. The Theoretical and Calibrated volume of the formed spherical cap

Degree of deformation $(\%)$	Corresponding height of spherical cap (mm)	Theoretical volume $(\mu \mathrm{L})$	Calibrated volume $(\mu \mathrm{L})$
5	0.67	9.6	18.0
10	0.94	13.8	22.0
15	1.16	17.2	26.0
20	1.34	20.2	30.0

Table S-2. The sequence of primers

Gene	Sequences of primers	Products
MCP-1	Forward: 5'cca gca gca agt gtc cca aag 3^{\prime} Reverse: 5^{\prime} tgc ttg tec agg tgg tcc atg 3^{\prime}	115 bp
IL-6	Forward: $5^{\prime} \mathrm{gcc}$ act cac ctc ttc aga acg 3^{\prime} Reverse: $5^{\prime} \mathrm{ttt}$ cac cag gea agt ctc ctc 3^{\prime}	208 bp
IL-8	Forward: $5^{\prime} \mathrm{ttc}$ agg aat tga atg ggt ttg c 3^{\prime} Reverse: 5^{\prime} cac tgt gag gta aga tgg tgg c 3^{\prime}	234 bp
ICAM-1	Forward: $5^{\prime} \mathrm{ttg}$ gaa gcc tca tcc g 3^{\prime} Reverse: 5^{\prime} caa tgt tge gag acc c 3^{\prime}	231 bp
eNOS	Forward: $5^{\prime} \mathrm{gca}$ acc aca tca agt atg cca cc 3^{\prime} Reverse: 5^{\prime} tgt tec aga ttc gga agt ctc ctc 3^{\prime}	102 bp
Rel-A	Forward: 5^{\prime} gac gac tgt tce ccc tc 3^{\prime} Reverse: $5^{\prime} \mathrm{cct} \mathrm{cgc}$ act tgt age gg 3'	110 bp
GAPDH	Forward: 5^{\prime} tca acg acc act ttg tca agc tca 3^{\prime} Reverse: 5^{\prime} get ggt ggt cca ggg gtc tta ct 3^{\prime}	118 bp

Section 3

The round surface of the well bottom was formed after injection of water into chamber.

Figure S-2. The round shape of well bottom was verified by plotting the height of the focus plate of the points distributed on a longitude line under the different degrees of the deformation.

Cell viability of peripheral region and intermediate region after 6 h and 12 h stretch

Figure S-3. Fluorescent images ($20 \times$ objective) of the cells in the peripheral regions and intermediate regions in the membranes under the different degrees stretch for 6 h and 12 h . The scale bar is $75 \mu \mathrm{~m}$. A) The peripheral regions after 6 h stretch; B) the intermediate regions after 6 h stretch; C) the peripheral regions after 12 h stretch; D) the intermediate regions after 12 h stretch.

