A simple multi-array stretching device to induce inflammatory responses of vascular endothelial cells

Jiasheng Wang ^a, Beiyuan Fan ^a, Yuanchen Wei ^a, Xingmei Suo ^{b*}, Yongsheng Ding ^{a*} Affiliation:

a College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China b School of information engineering, Minzu University of China, Beijing, 100081, China

Section S-1

The calculation of deformation of spherical cap (the diameter of each culture well is 6 mm)

Figure S-1. A spherical cap diagram

A spherical cap is the region of a sphere which lies above (or below) a given plane. Let the sphere have radius R, then the volume V of a spherical cap of height h and base radius a is given by the equation of a spherical segment,

$$V = \pi h^2 (R - \frac{h}{3})$$
 (S-1.1)

The surface area of the base circle gives

$$S_0 = \pi a^2$$
 (S-1.2)

The curved surface area of the spherical cap gives

$$S_i = 2\pi Rh \tag{S-1.3}$$

Let ε denote the change in surface area on the middle layer between the stretched and unstretched status. The relationship can be described as by

$$S_i = (1 + \varepsilon)S_0 \tag{S-1.4}$$

Combining the formula 2.2, 2.3 and 2.4, the equation gives

$$2Rh = (1 + \varepsilon)a^2 \qquad (S-1.5)$$

Using the Pythagorean Theorem gives

$$(R-h)^2 + a^2 = R^2$$
 (S-1.6)

Combining the equations 2.5 and 2.6, R and h can be solved as

$$R = \frac{a\left(1+\varepsilon\right)}{2\sqrt{\varepsilon}} \tag{S-1.7}$$

$$h = a\sqrt{\varepsilon} \tag{S-1.8}$$

Substituting R and h, the equation (2.1) can be rewritten

$$V = \frac{1}{6}\pi a^3 (3+\varepsilon)\sqrt{\varepsilon}$$
 (S-1.9)

Section 2

Table S-1. The Theoretical and Calibrated volume of the formed spherical cap

Degree of deformation	Corresponding height	Theoretical volume	Calibrated volume
(%)	of spherical cap (mm)	(µL)	(µL)
5	0.67	9.6	18.0
10	0.94	13.8	22.0
15	1.16	17.2	26.0
20	1.34	20.2	30.0

Table S-2. The sequence of primers

Gene	Sequences of primers	Products	
MCP-1	Forward: 5'cca gca gca agt gtc cca aag 3'	115 hn	
	Reverse: 5'tgc ttg tcc agg tgg tcc atg 3'	115 op	
IL-6	Forward: 5'gcc act cac ctc ttc aga acg 3'	208 bp	
	Reverse: 5'ttt cac cag gca agt ctc ctc 3'		
IL-8	Forward: 5'ttc agg aat tga atg ggt ttg c 3'	234 bp	
	Reverse: 5'cac tgt gag gta aga tgg tgg c 3'		
ICAM-1	Forward: 5'ttg gaa gcc tca tcc g 3'	221 hr	
	Reverse: 5'caa tgt tgc gag acc c 3'	231 Up	
eNOS	Forward: 5'gca acc aca tca agt atg cca cc 3'	102 hm	
	Reverse: 5'tgt tcc aga ttc gga agt ctc ctc 3'	102 bp	
Rel-A	Forward: 5'gac gac tgt tee eee te 3'	110 hm	
	Reverse: 5'cct cgc act tgt agc gg 3'	110 bp	
GAPDH	Forward: 5'tca acg acc act ttg tca agc tca 3'	118 bp	
	Reverse: 5'gct ggt ggt cca ggg gtc tta ct 3'		

Section 3

The round surface of the well bottom was formed after injection of water into chamber.

Figure S-2. The round shape of well bottom was verified by plotting the height of the focus plate of the points distributed on a longitude line under the different degrees of the deformation.

Cell viability of peripheral region and intermediate region after 6 h and 12 h stretch

Figure S-3. Fluorescent images ($20 \times$ objective) of the cells in the peripheral regions and intermediate regions in the membranes under the different degrees stretch for 6 h and 12 h. The scale bar is 75 µm. A) The peripheral regions after 6 h stretch; B) the intermediate regions after 6 h stretch; C) the peripheral regions after 12 h stretch; D) the intermediate regions after 12 h stretch.