Supplemental information for:

Continuous inertial microparticle and blood cell separation in straight channels with local microstructures

by

Zhenlong Wu,^{a,b} Yu Chen,§^c Moran Wang,^c and Aram J. Chung^{*a}

^aDepartment of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 1108th Street, Troy, NY 12180, USA. Email: <u>chunga6@rpi.edu</u>.

^bSchool of Aeronautic science and engineering, Beihang University, Beijing 100191, China. ^cDepartment of Engineering Mechanics, School of Aerospace, Tsinghua University, Beijing 100084, China §Present address: Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Supplemental Figures

Figure S1. A CAD layout of the inertial particle and cell sorter. The device consists of three sections: (1) A straight rectangular channel (a length of 2.5 cm), (2) A channel with 40 symmetrically positioned square microstructures (a total length of 2 cm), and (3) A straight rectangular channel with a trifurcating outlet (a length of 0.5 cm). The channel height of 21 μ m is maintained.

Figure S2. Six 5.5 μ m polystyrene particle trajectories. Based on particle initial position and particle-particle interaction, particles initially exhibit different trajectories though later they show similar stable motions by the secondary flows from microstructures.

Figure S3. Four 5.5 μ m polystyrene particle trajectories. Due to the particle crosstalk near X \approx 29 mm, a particle trajectory (pink) is modified but later it stabilizes back.

Figure S4. Favourable particle-particle interaction. A particle positioned initially in the channel centre could escape with an assist of the particle-particle interaction ($X \approx 37.5$ mm).

Figure S5. Microparticle migrations of a mixed sample (two 9.9 and two 5.5 μ m polystyrene microspheres) for a longer range.

Figure S6. A normalized light intensity plot of particle distribution as a function of different particle sizes with a fixed Reynolds number of 35.5. All lines are generated from 2000 image stacks.

Figure S7. Fluorescent images from top-view as particles flow downstream. A mixture of 5.5 μ m (red) and 9.9 μ m (green) particles is clearly separated. Scale bar represents 50 μ m.

Figure S8. A normalized fluorescence intensity plot of Fig. S7 near the outlet.

Figure S9. High microsphere concentration test. Due to the undesirable particle-particle interactions at higher particle concentrations, small particles were migrated to the channel centre. Scale bar represents $50 \mu m$.

Figure S10. Purity and separation efficiency of RBCs and WBCs of 0.5% diluted human blood at various flow conditions.

Figure S11. Illustration of a paralleled device with 72 individual channels radially arrayed with a single inlet and two ring outlets. It is expected that we can separate RBCs and WBCs with a throughput of 10.8 mL/min for 0.25% diluted blood.

Supporting Movie Captions

Supplemental Movie S1. **Separation of a microsphere mixture.** A video demonstrating 5.5 μ m (0.001% w/w) and 9.9 μ m (0.01% w/w) microparticle separation. Test was operated at a flow rate of 150 μ L/min.

Supplemental Movie S2. Single-size particle migrations of four 9.9 μ m polystyrene microspheres. A lattice-Boltzmann method based numerical prediction of large particle behaviours at *Re* = 35.5.

Supplemental Movie S3. Single-size particle migrations of four 5.5 μ m polystyrene microspheres. A lattice-Boltzmann method based numerical prediction of small particle behaviours at *Re* = 35.5.

Supplemental Movie S4. Single-size particle migrations of a mixed sample (two 9.9 μ m and two 5.5 μ m polystyrene microspheres). A lattice-Boltzmann method based numerical prediction of mixed-sized particle behaviours at *Re* = 35.5.

Supplemental Movie S5. Separation of RBCs and WBCs from 0.5% diluted human blood. A video exhibiting RBC and WBC separation. Test was operated at a flow rate of 150μ L/min.