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1 Comparison of entropy measures: example toy
model

We recall here the entropy-like measure {Si
F } proposed in [1] and we com-

pare it to our network entropy measure S. The results presented in [1] are
substantially different from our achievements and the reason lies in the concep-
tual foundation of the two measures. We clarify their relation thank to a simple
toy model.
The “entropy of information flux distribution" {Si

F } is a single-node entropy
measure, i.e. {Si

F } is a collection of entropy values, one for each node of the
designed network (i = 1, ...N where N is the total number of nodes). This
measure behaves similarly to the local disparity-heterogeneity index (or partic-
ipation ratio PR) of weighted networks, and is defined as follows:

1. compute the correlation matrix {cij} (R Pearson correlation coefficient)

2. Rescale the correlation values cij between 0 and 1, i.e.

dij = (1 + cij)/2 (1)

3. Compute the Hadamard product between the designed adjacency matrix
{aij} and the distance matrix {dij}

4. For any given node i with neighbors j we can then assign a ”probability
distribution” as follows

pij =
dij∑
j dij

(2)

5. Entropy follows as

Si
F = − 1

log ki

∑
j∈N (i)

pij log pij (3)

6. At the end we obtain, for each pool of samples, a vector of entropy values
{Si

F }.
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The proposed entropy SF quantifies the amount of randomness/disorder of the
local flux distribution surrounding any given node i. When the flux is con-
strained along one direction (i.e. only one component of pij is nonzero for a
give node) Si

F = 0, while when the flux is equally distributed among all neigh-
bors (pij = 1/ki) Si

F = 1.
Our network entropy S differs for many reasons:

1. We associate a unique scalar entropy value S for each sample, based on
the whole adjacency matrix (PPI) and on single-sample gene expression
profile. We then can perform statistical analysis based on the entropy
values of a set of samples (e.g. metastatic samples). The SF measure
instead generates an entropy value for each node (gene), that is based on
all the samples taken together (in order to calculate correlation matrix).
In this approach is is thus not possible to separate informations regarding
single samples.

2. Our measure S is properly network-like, i.e. it refers to the system as a
whole, not divisible in its single components (nodes/genes).

3. S can be considered as the logarithm of the number of "typical" networks
compatible with some features, as stated by the principle of Statistical
Mechanics of ensembles, based on the assumption that each real network
(describing a single sample) is just an instance of all the possible networks
(an ensemble) satisfying the same characteristics, namely the constraints
on degree sequence and on weight distribution. The SF measure represents
instead a ”local disorder” , or dishomogeneity index of the neighbours of
each single node (in a Shannon entropy sense).

4. The related single node entropy {Si} is a vector characterizing again a
single sample, and is not based on the whole sample dataset. This entropy
measure is formally similar to {Si

F }, i.e. it is Shannon-like and it is related
to a probability distribution for a given node i. Anyway our probability
distribution covers all the possible nodes (N − 1) because is related to
the link probability distribution {pij}. The link probability distribution
is obtained thanks to the maximization of S with some constraints. The
link weights used to compute Si tell us how likely is to observe a given link
between node i and node j once we draw a network from the ensemble.

5. Having a vector {Si} for each sample allows a statistical analysis of dif-
ferent conditions at single-gene and single-sample level. Moreover, our
analysis can be extended to multiple levels, i.e. performing an enrichment
study for the KEGG pathways onto which the genes are annotated.

1.0.1 Toy model

We show now a simple example remarking the main differences between the
two entropy measures. We consider a network of 400 nodes composed by 4 main
clusters (see Fig. 1), each one a Poisson random network with average degree
10 and number of nodes Nc = 100.
Each node can be associated with different features, i.e. a temporal signal or
its gene expression value through different samples. Once defined the profiles
for all the nodes we can easily compute the R Pearson correlation coefficient for
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Figure 1: Toy model: network visualization with 4 main clusters (on the left)
and its related adjacency matrix (on the right).

each couple. In this toy model each node i is related to a temporal signal. We
consider two scenarios:

Case 1 Nodes belonging to the same cluster have similar temporal behaviours,
i.e. they are synchronized.

Case 2 Each node has its own specific temporal signal, not related to its
neighborhood

For case 1 we randomly choose one of the clusters, and we associate a series
xi(t) of NT time points with each of its nodes, i.e.

xi(t) = Ai sin(t) + ε t = 1, ..., NT (4)

where Ai is the amplitude of the signal, a random integer between 1 and 5, and
ε is a noise variable, drawn from a uniform continuos distribution between 0
and 1. For the other three clusters, we obtain three time series from the original
series by permuting the time ordering of the points, so to have correlation only
inside each cluster and not between them. For case 2, we generated a unique
400×NT matrix following Eq. 4 for each row, and we randomly permuted the
values each row in order to have the same values but completely uncorrelated
series between all nodes.
For case 1 and case 2 we computed the Pearson correlation matrix, and we

rescaled it accordingly to Eq. 1. The rescaled correlation matrices are shown in
Fig. 2.
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Figure 2: Rescaled correlation matrices for case 1 and 2. In case 1 the syn-
cronization of nodes belonging to the same cluster is highlighted by the yellow
color related to high values of correlation.

Figure 3: Box plot comparing the entropy of information flux distribution {Si
F }

for case 1 and case 2. The median value is respectively 1 for case 1 and 0.9982
for case 2, and they differ significantly (P < 10−20).

Once defined the two matrices we can easily measure {Si
F } in both situations,

using Eq. 3. The two entropy distributions are displayed in Fig 3. The me-
dian value is respectively 1 for case 1 and 0.9982 for case 2, and they differ
significantly (P < 10−20). The entropy distribution {Si

F } seems to quantify in
case 1 a higher uniformity of correlation values in the neighborhood of nodes,
independently on the effective value of such correlation.
Even if the background is different from our application of S entropy in the
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Figure 4: Histogram of number of links Bl per bin l in case 1 and 2, used to
calculate S values for the “spatial network ensemble”. In both situations we use
a linear binning with 20 bins. Since for the calculation of the entropy constraints
only the shape of the bin distribution is relevant, and not the value of the bin
centroids, we show the bin plots with arbitrary scale on the x axis (i.e. bins
numbered from 1 to 20).

paper, we can test how the entropy of network ensembles behaves with these
two datasets, by using the definition of ”spatial ensemble” as described in the
main text. The constraints for the toy model are then the degree sequence of
the network (the same in both case 1 and case 2) and the binned distribution
of the number of links belonging to each correlation bin (specific for each case).
We defined 20 bins in both case 1 and case 2 (see Fig. 4) in order to have
exactly the same number of constraints. These constraints are fixed on average
over the ensemble of networks, selected by the maximization of S with the given
constraints. The value of S defines the logarithm of the number of “typical" net-
works in the ensemble, i.e. it “counts" the number of networks compatible with
the observed degree sequence and correlation distribution of the links. Using
the previous set of signals for case 1 and case 2, the network entropy values are
respectively 6.7718 · 103 and 9.5644 · 103, meaning that the number of networks
compatible with the constraints of case 1 is smaller than case 2.
The results of the two methods thus have an opposite trend, with a different
interpretation as stated above. Further on, we validated this scenario comput-
ing 50 different realizations of the signal set, both for case 1 and case 2. The
results for the entropy of flux distribution are shown in Fig. 5 where we plotted
the distribution of the medians. The results for the network entropy measure
are displayed in Fig. 6.

2 Algorithms
In this section we examine in depth the algorithms that we used and that

we attach as supplementary files: We provide a Matlab implementation for
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Figure 5: Distribution of the median values for {Si
F } related to 50 different

realizations of the signal set for case 1 and case 2.

Figure 6: Distribution of network entropy values {S} related to 50 different
realizations of the signal set for case 1 and case 2.

the calculation of network entropy for the spatial ensemble (spatial.m) and
the configuration ensemble (configuration.m), also implemented in a paral-
lel computing version requiring the Matlab Parallel Toolbox (spatialp.m and
configurationp.m respectively). The python code (networkentropy.py) is a
small library that gathers together the different ensemblecalculations as func-
tions, only in a parallelized version.
In the different scripts the algorithm is implemented with the same iterative
approach, i.e. starting from some chosen conditions for the Lagrangian mul-
tipliers the algorithm loops until it reaches convergence (the convergence is
reached whenever the maximum relative error affecting the components of the
Lagrangian multipliers is< 10−5, a tunable parameter inside the scripts, that for
our applications was set to this value since it sufficed to find significant result).
Different random starting guesses do not affect substantially the final value of
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Figure 7: Test for the uniqueness of the network entropy solution in case 2.
We considered 1000 different starting Lagrangian multipliers, drawn from an
uniform random distribution between 0 and 1.

network entropy. As shown in Fig. 7, we tested 1000 different vectors of starting
conditions for the Lagrangian multipliers related to case 2 in the previous toy
model. In particular, we drew the values from an uniform random distribution
between 0 and 1, but this is not relevant for the final value of network entropy.
We remark that the uniqueness of the final solution (i.e. the pij values and the
resulting S) is guaranteed from problems of constrained entropy maximization
whenever the constraints are linear functions of the variables to be maximized,
as it is in our case (see [2] for details). Moreover, we studied the time complexity
of our algorithms. In Fig. 8 we compared a single run of each different imple-
mentation (configuration ensemble) over a set of Poisson random graphs with
fixed average degree 〈k〉 = 10 and different number of nodes. Time increases as
a function of network size as a power law t = a ·N b, with the fitted exponents
b for the power laws, for scalar Matlab and parallelized Python scripts respec-
tively, equal to 2.62 ± 0.02 (95% C.I. and R2 = 0.9997) and 2.43 ± 0.04 (95%
C.I. and R2 = 0.9989). The parallel version of the Matlab script asymptotically
shows a similar behavior. The three versions of the same algorithm seem to have
a common power law relation with exponent ≈ 2.5 between time and network
size, but different multiplicative constants a (affected by parallelization).

3 Sample Discrimination by Network Entropy
We have evaluated the discrimination power of the network entropy for each

dataset. The classification has been performed with a Random forest with 100
randomized binary trees [3], with a leave-one-out cross-validation procedure.
The classification performances are consistent if we consider a number of trees
greater then 10.

Starting from the groups shown in Tab. 1, the resulting classification per-
formances are displayed in Tab. 2. The specificity of the method (its ability
to correctly classify a negative case) is consistently high (all values are ≥ 0.8),
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Figure 8: Plot and log-log plot of the time performances for a single run of each
different implementation (configuration ensemble) over a set of Poisson random
graphs with fixed average degree 〈k〉 = 10 and different number of nodes.

Ageing Colon Ewing Met Rel

negative 5 8 30 97 179
positive 5 15 7 28 107

Table 1: We consider as "negative" classes (for Ageing, Colon, Ewing, Met and
Rel databases respectively) the following: "A", "normal","non-met", "non-met"
and "non-rel", while "positive" classes are "E", "crc","met", "met" and "rel"
(in the same order).

while the sensitivity (the ability to correctly classify a positive case) shows larger
variations (from 0.87 to 0.21).

Ageing Colon Ewing Met Rel

true negative 4 7 24 80 122
false positive 1 1 6 17 57
true positive 4 13 2 6 47
false negative 1 2 5 22 60
sensitivity 0.80 0.87 0.29 0.21 0.44
specificity 0.80 0.88 0.80 0.82 0.68

Table 2: Classification performances

The same classification has been tested with different classification algo-
rithms (data not shown): Naive Bayes, Logistic Regression and Linear Support
Vector Machine. The results were consistent with this analysis both for the
specificity and the sensitivity values.

We guess that, with enough data available, Network Entropy could prove to
be an interesting measure even for diagnostic purposes.
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4 Pathway relations
For each dataset (Colon, Ewing, Met, Rel, Ageing), given the single-node

entropy values {Si} for each sample, we checked by a nonparametric Wilcoxon
rank sum test for significant differences between the groups (P < 0.05). More-
over, considering the a priori biological knowledge available from the KEGG
database, we performed a functional enrichment analysis of KEGG pathways
based on the hypergeometric distribution (i.e. counting the number of genes
with significant differences in single-node entropy for a particular pathway, given
the total number of significant variations in the whole network). A P < 0.05
value was considered for significant enrichment.

The list of all 191 KEGG pathways, divided into 42 metapathways and 6
functional groups, are shown in Supplementary Table 1 (xlsx file) The list of all
P values for all the used datasets, for single nodes and for KEGG pathways, are
shown in Supplementary Table 2 (xlsx file).

In the following, for each data set we show the network of significant KEGG
pathways (selected by the previous mentioned hypergeometric test) that are
linked if they share at least one significant gene (in terms of Wilcoxon test).
The significant paths related to “Human Diseases” are not shown. Moreover,
we chose to display only those pathways whose size (i.e. number of genes) is
≥ 5. Connected components are marked with a different color, only for display
purposes.

5 Supplementary Table 3
In Supplementary Table 3 (xlsx file) we compare the list of KEGG pathways

enriched by genes which significantly change their single-node entropy with the
analogous list given by significant variations in gene expression profiles. As
stated in the main text, for each data-set the pathways selected by the two
methods are different, remarking the novel information encoded in our approach.
The lists display only those pathways whose size is ≥ 5.
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Figure 9: Colon data set (minimum weight 1, maximum weight 24, 4 con-
nected components)
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Figure 10: Ewing data set (minimum weight 1, maximum weight 7, 7 con-
nected components)
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Figure 11: Met data set (minimum weight 1, maximum weight 13, 5 connected
components)
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Figure 12: Rel data set (minimum weight 1, maximum weight 14, 7 connected
components)
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Figure 13: Ageing data set (minimum weight 1, maximum weight 11, 5 con-
nected components)
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