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Figure S1. Glycolysis was suppressed and TCA cycle was sustained in Jhdm1b knockdown cells.

(A) GC-MS analysis of isotopologue concentrations of lactate in media from wild type and Jhdm1b knockdown
HeLa cells. (B) Carbon flow from [U-'3C]- glucose through glycolysis, Krebs cycle, pyruvate carboxylation, and
pyrimidine nucleotides.(C) GC-MS analysis of *C isotopologue distribution of intermediate metabolites of TCA
cycle from wild type and Jhdm1b knockdown HeLa cells. The incorporation of *3C atoms from *3C¢-Glucose into



intermediate metabolites are denoted as m+n, where n is the number of **C atoms. Red and green arrows show the

3C carbon skeleton patterns derived from *Cq-Glucose without or with pyruvate carboxylation. The error bars
represent SEM. (n=3)
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Figure S2. Glutamine entry into TCA cycle was enhanced in Jhdm1b knockdown HeLa cells

(A) GC-MS analysis of isotopologue concentrations of intracellular glutamate in cell pellet from wild type and



Jhdm1b knockdown HeLa cells. (B) Carbon flow from [U-*C]- glutamine through glutaminolysis, Krebs cycle,
pyruvate carboxylation, and malic enzyme (ME) reaction. (C) GC-MS analysis of **C isotopologue distribution of
intermediate metabolites of TCA cycle from wild type and Jhdm1b knockdown HelLa cells. The incorporation of
3¢ atoms from **Cs-Glutamine into intermediate metabolites are denoted as m+n, where n is the number of *C
atoms. Red and green arrows show the *C carbon skeleton patterns derived from **Cs-Glutamine without or with
pyruvate carboxylation. Blue arrow show the 3C carbon skeleton patterns derived from ME reaction. The error

bars represent SEM. (n=3)
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Figure S3. Comparison of several **C-labeled metabolites in NMR experiments.
(A) Several metabolites of 2D *H-13C HSQC and TOCSY spectra of extracts of wild type and Jhdm1b HeLa cells.
(B) 1D Bc(*H) HSQC spectra of glutathione (GSH)-glycine and glutamate in wild type and Jhdm1b HeLa cells.
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Figure S4. RIP3 knockdown reverted enhancement of TCA cycle induced by Jhdm1b knockdown.

(A) RIP3 and Jhdm1b mRNA levels by real-time PCR of HelLa cells infected with a lentivirus expressing RIP3 and
Jhdmlb shRNA. (B) GC-MS analysis of isotopologue concentration of glutamate in Jhdmlb knockdown and
Jhdm1b/RIP3 double knockdown cells. (C) GC-MS analysis of isotopologue concentrations of intermediates of
TCA cycle produced by **Cs-glutamine in Jhdm1b knockdown and Jhdm1b/RIP3 double knockdown cells. All °C
labeling patterns products were derived with *Cs-GIn as tracer. The error bars represent SEM. (n=3)



