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Supplement Information

Supplementary Methods
The ODEs of the dynamic model

1) The generation and repair of DSBs:
The number of DSBs is raised during irradiation phase arise, and the number can be

described as follow:
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The Eqgs. (S1) describes the generation of DSBs under stress, Egs. (S2)- (S4)
represents the two repair process, Egs. (S5)- (S10) shows the dynamic process among
intact DSB, DSB complex and fixed DSB in repair processes, subscripts 1 and 2

describe the fast and the slow kinetics, respectively.!-

2) The self-feedback loop of ATM activation:
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Egs. (S11)-(S14) represent the activation of ATM protein by DSBCs (obtained
from the simulations described in DSBs generation and repair module). We define
ATMd, ATM and ATMa as the concentrations of ATM dimer, inactive ATM monomer,
and active ATM monomer, respectively.

In addition, we assume the total concentration of ATM molecules is a constant

value, which means the equation [ATMt [F2[ ATMd W[ATM W[ ATMa] is existed,

where ATMt represents the concentration of all forms of ATM in the cell. Therefore,
the functional dependence between the number of DSBCs and [ATMa] at steady can
be solved analytically.?
3) p53 regulatory network
Table S1 Variables of the p53 regulatory network

Variable Description
mp53 p53 transcript
p33 inactive form of p53 protein
pS3a active form of p53 protein
mMdm?2 Mdm? transcript
Mdm?2 inactive form of Mdm?2 protein
Mdm?2a active form of Mdm?2 protein
mMyc c-Myc transcript
Myc active form of c-Myc protein
mMucinl Mucinl transcript
Mucinl active form of Mucinl protein

cdk2 inactive form of Cyclin E/cdk2 protein
cdk2a active form of Cyclin E/cdk2 protein

Akt inactive form of Akt protein
Akta active form of Akt protein




PIP2 inactive from of PIP3 protein

PIP3 active form of PIP3 protein

p21 active form of p21 protein
PTEN active form of PTEN protein
Siah-1 active form of Siah-1 protein

miR-145 active from of miR-145 protein

ARF active form of P19/14ARF protein
betaC active form of Beta-Catenin protein
ATMa active form of ATM monomer protein

p53 transcript, mp353: The first term stands for spontaneous p53 mRNA synthesis,

while the second one describes its spontaneous degradation

d[mp53
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Inactive p53, p53: The first term stands for spontaneous mp33 transcription, the
second one represents dephosphorylation by p53a, the third term represents p53
phosphorylation catalyzed by 47Ma, the next two terms describes Mdm2a driven and

its spontaneous degradation
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gtk [pS3al+J ab! Ma][p53]+Jab -
$16
ey, [Mdm2a]— P s (53]
hb [pS31+d,,, bF

Active p53, p53a: The first term describes p53 phosphorylation catalyzed by ATMa,
the seconds one stands for Mdm2a driven p53a degradation, the next one represents

p33a dephosphorylation, and the last term stands for its spontaneous degradation
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Mdm?2 transcript, mMdm2: The first term stands for spontaneous Mdm2 mRNA

synthesis, the second one represents p53a driven Mdm?2 activation, and the last one

describes its spontaneous degradation
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Inactive Mdm2, Mdm?2: The first term stands for spontaneous mMdm2 transcription,
the second term describes driven Mdm2a dephosphorylation catalyzed by ARF, the
third one represents MdmZ2a dephosphorylation, the fourth one stands for cdk2a
inhibited Mdm2 phosphorylation, the next two terms represent Akta driven Mdm?2 and

its spontaneous degradation
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Activate Mdm?2, Mdm2a: The first term stands for Mdm?2 phosphorylation
catalyzed by Akta, the second one describes Mdm?2 phosphorylation inhibited by
ckd?a, the next two terms represent itself and ARF driven Mdm2a dephosphorylation

and the last two terms describe ATMa driven Mdm2a and its spontaneous degradation
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c-Myc transcript, mMyc: The first term stands for spontaneous c-Myc mRNA
synthesis, while the second one describes its spontaneous degradation
d[mMyc]
— o 5l[mMyc] (S21)

Active c-Myc, Myc: The first term stands for miR-145 inhibited Myc transcription,

and the last one stands for its spontaneous degradation
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Mucinl transcript, mMucinl: The first term stands for spontaneous Mucinl mRNA

synthesis, while the second one describes its spontaneous degradation

M:G —0 [mMucinl] (S23)
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Active Mucinl, Mucinl: The first term stands for miR-145 inhibited mMucinl
transcription, and the last one stands for its spontaneous degradation
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Inactive Cyclin E/cdk2, cdk2: The first term stands for spontaneous cdk2 synthesis,
the second one describes ckd2a dephosphorylation, the third one represents cdk2a
dephosphorylation catalyzed by p21, the next term describes cdk2 phosphorylation,

and the last one stands for its spontaneous degradation
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Active Cyclin E/cdk2, cdk2a: The first term stands for cdk2 phosphorylation, the
second one represents cdk2a dephosphorylation catalyzed by p21, the third term

describes ckd2a dephosphorylation, and the last one stands for its spontaneous

degradation
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Inactive Akt, Akt: The first term describes spontaneous Akt synthesis, the second
one describes Akta dephosphorylation, the third and fourth terms represent Akt
phosphorylation catalyzed by 4TMa and PIP3, the fifth term represents miR-145

inhibited 4k phosphorylation, while the last one stands for its spontaneous



degradation
dAkt] _ ok [dkta] ATMa [ Akt]
dt ed [Aktal+J,,; @ [Akt]+J
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Active Akt, Akta: The first two terms stand for Akt phosphorylation catalyzed by
ATMa and PIP3, respectively, the third one describes miR-145 inhibited Akt
phosphorylation, and the next one represents Akta dephosphorylation, while the last

one stands for its spontaneous degradation
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Inactive PIP3, PIP2: The first term stands for spontaneous PIP2 synthesis, the
second one describes PIP3 dephosphorylation, the third term represents PIP3
dephosphorylation catalyzed by PTEN, and the next one describes PIP2

phosphorylation, while the last one stands for its spontaneous degradation
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Active PIP3, PIP3: The first stem stands for PIP2 phosphorylation, the second one

describes PIP3 dephosphorylation catalyzed by PTEN, the third stem represents PIP3

spontaneous dephosphorylation, and the last one stands for its spontaneous

degradation
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Active p21, p21: The first term describes spontaneous p2/ synthesis, the second

term p53a driven p21 synthesis, the next two terms describe Myc and ARF inhibited

p21 synthesis, respectively and the last one stands for its spontaneous degradation
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Active PTEN, PTEN: The first term describes spontaneous PTEN synthesis, the
second one stands for p53a driven PTEN synthesis, and the next one represents its

spontaneous degradation
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Active Siah-1, Siah-1: The first term describes spontaneous Siakh-1 synthesis, the
second one stands for p53a driven Siah-1 synthesis, and the next one represents its
spontaneous degradation
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Active micro RNA 145, miR-145: The first term describes spontaneous miR-145
synthesis, the second one stands for p53a driven miR-145 synthesis, and the next one

represents its spontaneous degradation
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Active P19/14ARF, ARF: The first stem stands for ARF spontaneous synthesis, the
next four terms describe betaC, Myc, Mucinl and p53 driven ARF synthesis,

respectively, and the last one stands for its spontaneous degradation
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Active Beta-Catenin, betaC: The first stem stands for betaC spontaneous synthesis,



the second and third ones describe p53 and Siah-1 driven betaC degradation,

respectively, the fourth one represents Mucinl inhibited betaC degradation, and the

last one stands for its spontaneous degradation

The definition of all the parameters in Egs. (S1)- (S36) is shown in Table S2. The
concentrations of all species are defined with respect to the total cell volume, which is

assumed to 2x10% m? and the mathematical models can explain and predict the
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behaviors of the molecules in dynamic equilibrium.
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Table S2 Parameters, their descriptions and their numerical values

Parame L. Consta Referen
Description
ter nt ce
kt Rate of DSBs generation per time scale 0.01 L4
air Number of DSBs generation per IR dose 35 1,4
al  Percentage of DSBs processed by fast repair 0.7 L4
a2 Percentage of DSBs processed by slow repair 0.3 1,4
kdcl Rate of DSBs transition to DSBCs in fast repair process 2 L4
kcdl Rate of DSBCs transition to DSBs in fast repair process 0.5 1,4
Kde? Rate of DSBs transition to DSBCs in slow repair 02 14
process
kedd Rate of DSBCs transition to DSBs in slow repair 0.05 14
process
Kofl Rate of DSBCs transition to Fixed DSB in fast repair 0.001 14
process
.. . . 0.000
kef2 Rate of DSBCs transition to F in slow repair process i L4
Keross Rate of DSB binary mismatch in second order repair 0.00] L4
process
kundim ATM undimerization rate 1 2
kdim ATM dimerization rate 8 2
kaf ATM phosphorylation rate 1
kar ATM dephosphorylation rate 3 2
bl Scale of the activation function of ATM | )
phosphorylation
b2  Scale of the activation function of ATM 0.8 2
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expression by p53a
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Catenin degradation
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Table S3 the raw data of the number of apoptosis cell for short-term simulation

at various time points

MCS
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 |70 | 80
1 |2 3 5 6 7 10 11 11 11 11 11 11 11 12 12 12 12
2 |4 7 8 8 9 9 10 11 11 11 11 11 11 13 14 |14 | 14
3 1 2 3 3 5 5 9 11 11 11 11 11 12 13 13 13 13
4 |5 5 5 7 8 10 11 14 15 16 17 17 17 17 17 17 17
5 1 4 7 9 10 10 11 11 12 12 12 12 12 13 13 13 13
6 |3 5 7 8 9 10 10 10 10 11 11 11 11 11 11 11 11
7 |3 4 5 7 9 10 12 12 12 12 12 12 12 12 12 12 12
8 |4 5 6 6 8 9 10 10 10 10 10 10 10 10 10 | 10 10
9 |1 3 7 8 10 12 14 14 15 15 16 16 17 17 17 17 17
S ]10(3 4 4 9 12 13 13 13 13 14 14 14 16 16 16 16 | 16
LED 11 |2 3 7 10 10 12 16 16 16 17 17 17 17 18 18 18 18
12 | 4 4 4 6 7 8 9 9 9 11 11 11 11 11 11 11 11
13 |1 3 5 6 8 11 11 11 12 12 12 13 13 13 14 |14 | 14
14 | 3 6 7 7 8 10 11 11 11 11 11 14 15 15 15 15 15
15 | 2 8 8 10 11 11 12 12 12 12 12 12 12 12 12 12 12
16 | 2 3 3 3 4 6 6 7 7 7 8 8 8 8 8 8 8
17 | 2 2 4 7 7 8 8 10 11 11 12 12 12 13 13 13 13
18 | 2 4 5 6 8 8 8 8 9 9 9 9 11 11 11 11 11
19 | 3 3 4 4 5 5 7 9 9 10 10 10 10 10 10 10 10
20 | 2 2 4 5 5 10 13 13 13 13 13 13 13 13 13 13 13
* 25 | 4 54 | 6758 935 | 10.6 | 11.1 114 | 11.8 | 12 122 | 12.55 | 129 | 13 13 13
5 5
ok 19.2 | 30.8 | 41.5 | 51.9 | 615 | 71.9 | 81.5 | 85.8 | 88.1 | 90.8 | 923 | 93.8 | 96.5 | 99.2 | 100 | 100 | 100

*: the average value of apoptosis cell

**. percentage of apoptosis cell (%)

Table S4 The raw data of the number of apoptosis cell in the loss regulative

function system




Group

1 12 |3

4

10

Number

7517972

82

83

7917571

76

83

Group

111213

14

15

16 | 17 | 18

19

20

Number

81|76 |78

80

75

8318179

73

75

for short-term simulation at 80 MCS time points.

Supplementary Figures
Figure S1 the dynamical behavior of pS3 regulatory network molecules
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Fig. S1. The kinetics of p53 regulatory network system within 3000 min, the level of ATMa is
fixed at the middle level for transforming zone (ATMa = 1.73). The time courses of 86% (19 for
22) molecules in the regulatory system undergo sustained oscillation with the same frequency and
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different swing.

Figure S2 The heat maps of local sensitivities of each reaction flux with respect to

each parameter.
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Fig. S2 The heat maps of local sensitivities of each reaction flux with respect to each parameter.

Each column represents a parameter, from left to right: Ky, Kap, Jab, 06, 0c, Kby It Knnes Jhes Of, K, D,
Ker, Jots Kads Jads Kqns Jqns Kigs Jicgs 08, g, Ony Kans Jans Ods Kegy Jegs Kuds Juds Kids Jid> Ked> Jed> Ods Oes Ows Kyvus
Jwus Kuws Juws Keus Tt Ous Ows o 0y, Koty Jets O, G, 1, Keiy Jeiy 05, O, 0o, Gp, Ny Kepy Jeps Kinps Jmps Nay Kaps Japs
1y, Op, Gj, Kik, Jiks Kigs Jij> Kpis Ipi> Oks Ojs Ggs Ny Kegs Jsq> Ny Kmgs Imgs Nos Kogs Jogs Og> O, Ny KCr, Jer, Or, O,
B, Kesy Jeoss Krsy Trsy Ko, Joss Kegs Jegs Des Oy Oy Koty by Kng, Jng, O1, 01, Kit, Jit, Ony 01, Kin, Jin, Ky, 1L, Kerogs,
b1, by, bs, kap, ky, air, kep, Kep, @1, @2, Kedr, Keazs Kaet> Kaez, Kabs Jabs Kans Jan, and each row represents a
single reaction flux, from top to bottom: mRNA-p53 translation, p53 phosphorylation by ATMa,
p53 degradation, p53a degradation, p53 degradation by Mdm2a, p53a degradation by Mdm?2a,
mMdm?2 basal induction, mRNA-Mdm?2 translation, mRNA-Mdm?2 translation by p53a, Mdm?2
phosphorylation by Akta, Mdm2a dephosphorylation by ARF, Mdm2 phosphorylation by cdk2a,
mMdm?2 degradation, Mdm2 degradation, Mdm2a degradation, Mdm?2a degradation by ATMa,
Akt basal induction, Akt phosphorylation by ATMa, Akt phosphorylation by PIP3, Akt
phosphorylation by miR-145, Akta dephosphorylation, Akt degradation, Akta degradation, PIP2
basal induction, PIP2 phosphorylation, PIP3 dephosphorylation, PIP3 dephosphorylation by
PTEN, PIP3 degradation, PIP2 degradation, PTEN basal induction, PTEN formation by p53a,
PTEN degradation, miR-145 basal induction, miR-145 formation by p53a, miR-145 degradation,
Myc degradation, Mucinl degradation, p21 basal induction, p21 formation by p53a, p21 formation
by Myc, p21 formation by ARF, p21 degradation, cdk2 basal induction, cdk2 phosphorylation,

cdk2a dephosphorylation, cdk2a dephosphorylation by p21, cdk2a degradation, cdk2 degradation,



ARF basal induction, ARF transcription by betaC, ARF transcription by Myc, ARF transcription
by Mucinl, ARF degradation, Siah-1 basal induction, Siah-1 formation by p53a, Siah-1
degradation, betaC basal induction, betaC degradation, betaC degradation by p53a, betaC
degradation by Siah-1, betaC degradation by Mucinl, ARF formation by p53a, mRNA-p53 basal
induction, mRNA-p53 degradation, p53a dephosphorylation, Mdm2a dephosphorylation, mRNA-
Myc basal induction, mRNA-Myc degradation, Myc transcription by miR-145, mRNA-Mucinl
basal induction, mRNA-Mucinl degradation, Mucinl transcription by miR-145, DSBs generation,
ATM undimerization, ATM dimerization, ATM dimerization, ATM phosphorylation, ATM
dephosphorylation, DSBs generation, ATM undimerization, DSBCsl1 transition to Fixed DSBI,
DSBCs2 transition to Fixed DSB2, DSBs processed by fast repair, DSBs processed by slow repair,
DSBCsl transition to DSBs1, DSBCs2 transition to DSBs2, DSBs1 transition to DSBCs1, DSBs2

transition to DSBCs2, ATMa dephosphorylation by p53, ATMa dephosphorylation by Akt.

Figure S3 The heat map of 76 scaled sensitivity absolute values (|S|) for 44 parameters and

23 reactions >1.
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Fig. S3 The heat map of 76 scaled sensitivity absolute values (|S|) for 44 parameters and 23
reactions >1 in incomplete network without the p21 note. Each column represents a parameter,

and each row represents a single reaction flux.

Figure S4 The normalized results of Xt in low and high steady state system
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Fig. S4 The normalized results of Xt in low and high steady state system. (A), (C) and (E) the

level of Xt for short-term stimulation; while (B), (D) and (F) for continuous stimulation. Red,

green, blue, cyan, dark-green and brown line represent the level of Xt in 0, 0.17, 0.43, 3.47, 4.75

and 6 system, respectively. Here, the MinValue is 0; the MaxValue is 1500 in (A), (B), (C) and

(D), while the MaxValue is 6000 in (E) and (F).

Figure S5 Plots showing snapshots of a sequence of the computation simulation
results of the model at various time points



MCS 10

MCS 12 MCS 16

MCS 80 MCS 24 MCS 32

- =03 : .
x * < . $.
« 0.03} . - . e
° ° So.2 -4
£ 0.02] . P g .
DR = 0.1 :
0.01 e s . e
" %, ", .
1 10 20 30 40 50 60 70 80 1 4 8 12 16 20 24 28 32
MonteCarlo Step (MCS) MonteCarlo Step (MCS)

Fig. S5 Plots showing snapshots of a sequence of the computation simulation results of the model
at various time points. (A) and (B) denote the plots of the spatial evolution of cell fate in low
steady state (e.g., 1.73 system) under short-term and continuous stimulation, respectively. Colours
of the cells correspond to state of cell, green and blue represent cell survival and apoptosis,

resprctively. Plots of Xt levels for the simulation in which cells undergo special treatments.

Figure S6a The snapshots of sequence of the computation simulation results of

the MaxValue = 1500 in incomplete regulatory networks
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Figure S6b The snapshots of sequence of the computation simulation results of

the MaxValue = 8000 in incomplete regulatory networks
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