Supporting Information

A metal carbonyl-protein needle composite designed for intracellular CO delivery to modulate NF-κB activity

Hiroshi Inaba,^a Nusrat J. M. Sanghamitra,^b Kenta Fujita,^c Takeya Sho,^c Takahiro Kuchimaru,^c Susumu Kitagawa,^{*a,b} Shinae Kizaka-Kondoh,^c and Takafumi Ueno^{*b,c}

^aDepartment of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan. ^bInstitute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. ^cDepartment of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan. Materials. Unless otherwise stated, all chemicals were purchased from commercial suppliers and used without further purification. DMEM (Sigma, D5796) containing 5% FBS, 1.8 mM L-glutamine, 0.9 mM sodium pyruvate, 0.1% sodium bicarbonate, 1% MEM non-essential amino acid solution (Sigma, M7145), 90 U/mL penicillin and 90 µg/mL streptomycin was used as a cell culture medium. PBS tablets (Takara Bio, T900) were used to make 10 mM PBS pH 7.4. Expression and purification of β -PN was performed as described previously.¹ RuCO apo-E45C/C48A-rHLFr was prepared as described previously,² CORM-3 and Ru(DMSO)₄Cl₂ were synthesized as described previously.^{3,4} CORM-3 was dissolved in distilled water and used immediately to each experiment. Sperm whale myoglobin was expressed and purified for myoglobin (Mb) assay according to the procedure.⁵ COP-1 was synthesized according to the reported procedure.⁶ HEK293/kB-Fluc cells were isolated as previously descried.² Amino acid sequences of monomers of β-PN and β -PN(Δ His-tag) are GSMAISDPNSSSVPPLEGNGTILVKGNVTIIVEGNADITVKGDATTLVEGNQTNT VNGNLSWKVAGTVDWDVGGDWTEKMASMSSISSGQYTIDGSRIDIGSVEGYIP EAPRDGQAYVRKDGEWVLLSTFLVEHHHHHH and GSHMLEGNGTILVKGNVTIIVEGNADITVKGDATTLVEGNQTNTVNGNLSWKV AGTVDWDVGGDWTEKMASMSSISSGQYTIDGSRIDIGSVEGYIPEAPRDGQAY VRKDGEWVLLSTFLVE, respectively.

Physical measurement. UV-vis spectra were recorded on a JASCO V-670 spectrometer. MALDI-TOF mass spectra were recorded on an Autoflex III mass spectrometer (Bruker Daltonics). ATR-IR measurements were conducted using a

S2

FT-IR4200 instrument (JASCO). ICP-MS measurements were conducted using an Elan DRC-e instrument (PerkinElmer). Luminescence measurements for NF- κ B reporter assay were conducted using a kit (Promega, E1500) and a Modulus Single Tube Luminometer (Turner BioSystems). Luminescence measurements for ROS assay were conducted using a 96-well plate reader (GloMax-Multi + Detection System). An MTT assay was conducted using model 680 Microplate Reader (BIO-RAD). Dynamic light scattering measurements were performed using a Zetasizer μ V system (Malvern, UK).

Fig. S1. Dynamic light scattering spectra of (a) β -PN_Ru and (b) β -PN_iRu. The measurement was performed using 10 μ M proteins in 0.1 M sodium phosphate pH 7.0 at 25°C.

Fig. S2. MALDI-TOF mass spectra of monomer of β -PN(Δ His-tag) (black) and after reaction of β -PN(Δ His-tag) with CORM-2 (blue). In the reaction, a methanol solution of CORM-2 (30 μ M) was slowly added to an aqueous solution of β -PN(Δ His-tag) (5.0 μ M in 20 mM Tris/HCl pH 8.0) and the mixture (final concentration of 20% methanol) was stirred at 25°C for 3 h in the dark.

Fig. S3. CO release of β -PN_Ru evaluated by myoglobin (Mb) and oxy-hemoglobin (Hb) assay. (a) Absorption spectra of carbonmonoxy Mb (MbCO) formed over time after addition of β -PN_Ru. β -PN_Ru (18 μ M Ru carbonyl) was added to deoxy-Mb (6.9 μ M) in 10 mM PBS containing 6.9 mM Na₂S₂O₄ under Ar atmosphere. Absorbance of 250-700 nm was recorded every 1 min after addition of β -PN_Ru. (b) Equivalent of released CO per Ru carbonyl of β -PN_Ru (filled circle) over time. Conversion of

deoxy-Mb to MbCO was calculated according to the reported procedure.⁷ The data were fitted using Excel and Solver to pseudo first order kinetics as shown in red line.⁸ Average of three independent measurements is shown. (c) Absorption spectra of oxy-Mb (black line) and oxy-Hb reacted with β -PN_Ru for 90 min (red line). β -PN_Ru (12 μ M Ru carbonyl) was added to the oxy-Hb (5.0 μ M) in 10 mM PBS. After 90 min incubation, absorbance of 400-700 nm was recorded.

Fig. S4. Confocal fluorescence images of (a) ATTO520-modified β -PN and (b) ATTO520-modified β -PN_Ru in HEK293 cells (scale bars, 10 µm). Each needle (0.83 µM) was incubated with HEK293 cells for 12 h in the medium at 37°C under 5% CO₂. Cell nuclei were labeled with blue fluorescent Hoechst 33342.

Fig. S5. Cell viability in the presence of β -PN_Ru evaluated using an MTT assay. HEK293/ κ B-Fluc cells were incubated with β -PN_Ru (10 and 20 μ M Ru carbonyl) for 25 h at 37°C under 5% CO₂. A sample of untreated cells was used as a control. Each experiment was performed three times and the data represent mean ± SEM.

Fig. S6. Fluc reporter activity in HEK293/κB-Fluc cells in response to TNF-α treatments. HEK293/κB-Fluc cells $(1.0 \times 10^4 \text{ cells})$ were seeded in a 96-well plate and cultured overnight. The cells were lysed 12 or 24 h after 0-1.0 ng/mL TNF-α treatments and then Fluc activity was measured. The value after treatment of 0.3 ng/mL TNF-α is same in Fig. 4b. All the data shows the subtracted bioluminescence intensity of the cells that were treated with TNF-α from that of the negative control cells treated with buffer (0.1 M sodium phosphate pH 7.0). **P* < 0.05 compared to the negative control cells at each incubation time point.

Fig. S7. Comparison to the effect on NF-κB activity. HEK293/κB-Fluc cells (1.0×10^4 cells) were seeded in a 96-well plate and cultured overnight. The cells were preincubated with **β-PN_Ru** (5 µM Ru carbonyl), RuCO•apo-E45C/C48A-rHLFr (5 µM Ru carbonyl),² or CORM-3 (5 or 100 µM Ru carbonyl) for 1 h. Subsequently the cells were cultured for 24 h. The NF-κB activity was assessed by bioluminescence intensity from luciferase activity according to reported procedure.² All the data shows the subtracted bioluminescence intensity of the cells that were treated with each sample from that of the negative control cells treated with buffer (0.1 M sodium phosphate pH 7.0). **P* < 0.05 compared to the negative control cells at each incubation time point. Each experiment was performed three times and the data represent mean ± SEM.

Composite	Additive	Equivalent of CO per Ru	$t_{1/2}$ (min)
β-PN_Ru	_	0.15	10.6
	Glutathione, KCl	0.10	18.0
CORM-3	_	0.64	0.47
	Glutathione, KCl	0.35	0.32

Table S1. Equivalent of released CO per mole of Ru carbonyl and half-life $(t_{1/2})$ for CO release with and without glutathione and KCl.

β-PN_Ru and CORM-3 (20 μM Ru carbonyl) were added to the Mb (26 μM) in 10 mM PBS containing 17.3 mM Na₂S₂O₄ with or without 5 mM glutathione and 150 mM KCl under Ar atmosphere. Equivalent of released CO per Ru carbonyl and $t_{1/2}$ were determined by same methods shown in Fig. S3a and S3b. The concentrations of Ru, Mb, and Na₂S₂O₄ were higher than those of the experiment in Fig. S3 to detect clearly the spectral change of deoxy-Mb to MbCO in the presence of glutathione and KCl. Under the conditions, the $t_{1/2}$ values of β-PN_Ru and CORM-3 in the absence of glutathione and KCl were shorter than those shown in Fig. S3 because Na₂S₂O₄ with higher concentration enhances the CO release rates.^{9,10}

References

- N. Yokoi, H. Inaba, M. Terauchi, A. Z. Stieg, N. J. M. Sanghamitra, T. Koshiyama,
 K. Yutani, S. Kanamaru, F. Arisaka, T. Hikage, A. Suzuki, T. Yamane, J. K.
 Gimzewski, Y. Watanabe, S. Kitagawa and T. Ueno, *Small*, 2010, 6, 1873–1879.
- 2 K. Fujita, Y. Tanaka, T. Sho, S. Ozeki, S. Abe, T. Hikage, T. Kuchimaru, S. Kizaka-Kondoh and T. Ueno, *J. Am. Chem. Soc.*, 2014, **136**, 16902–16908.
- J. E. Clark, P. Naughton, S. Shurey, C. J. Green, T. R. Johnson, B. E. Mann, R. Foresti and R. Motterlini, *Circ. Res.*, 2003, **93**, e2–e8.
- 4 B. Sun, Z. Sun, Q. Jin and X. Chen, Int. J. Biol. Sci., 2008, 4, 176–183.
- 5 B. A. Springer, K. D. Egeberg, S. G. Sligar, R. J. Rohlfs, A. J. Mathews and J. S. Olson, *J. Biol. Chem.*, 1989, **264**, 3057–3060.
- 6 B. W. Michel, A. R. Lippert and C. J. Chang, J. Am. Chem. Soc., 2012, 134, 15668–15671.
- 7 U. Hasegawa, A. J. van der Vlies, E. Simeoni, C. Wandrey and J. A. Hubbell, J. Am. Chem. Soc., 2010, 132, 18273–18280.
- 8 L. Hewison, S. H. Crook, B. E. Mann, A. J. H. M. Meijer, H. Adams, P. Sawle and R. A. Motterlini, *Organometallics*, 2012, **31**, 5823–5834.
- C. Bohlender, S. Gläser, M. Klein, J. Weisser, S. Thein, U. Neugebauer, J. Popp, R.
 Wyrwa and A. Schiller, *J. Mater. Chem. B*, 2014, 2, 1454–1463.
- 10 S. McLean, B. E. Mann and R. K. Poole, Anal. Biochem., 2012, 427, 36-40.