# Supplemental Information for

# Protein-protein interactions generate hidden feedback and feed-forward loops to trigger bistable switches, oscillations and biphasic dose-responses

Thawfeek M. Varusai<sup>1</sup>, Walter Kolch<sup>1,2,3</sup>, Boris N. Kholodenko<sup>1,2,3,\*</sup> and Lan K. Nguyen<sup>1,4,\*</sup>

#### Affiliations:

<sup>1</sup> Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland

<sup>2</sup> Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland

<sup>3</sup> School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland

<sup>4</sup> Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.

\* *Corresponding authors:* <u>lan.nguyen@ucd.ie</u> (LKN), <u>boris.kholodenko@ucd.ie</u> (BK), In this supplementary information (SI), we present in detail the reactions, parameter values, and ordinary differential equations of the various models presented and discussed in the main text. In all the following tables, the concentrations and the Michaelis-Menten constants ( $K_ms$ ) are given in nM. First- and second-order rate constants are expressed in s<sup>-1</sup> and nM<sup>-1</sup> s<sup>-1</sup>. Maximum rates Vs of the enzymes catalysed reactions are expressed in nM s<sup>-1</sup>. In addition, the supplementary figures are shown in section 4.

S1. Single isolated PPI event



Table S1. Reactions and rates of the kinetic model.

| Reaction | Reactions                         | Reaction rates                                  | Parameter           |
|----------|-----------------------------------|-------------------------------------------------|---------------------|
| number   |                                   |                                                 | values              |
| 1        | $A + B \leftarrow \rightarrow AB$ | $v_1 = k_{1f} \cdot [A][B] - k_{1r} \cdot [AB]$ | $k_{1f} = 0.00001,$ |
|          |                                   |                                                 | $k_{1r} = 0.0005$   |

 Table S1. Ordinary differential equations of the kinetic model. The reaction rates are given in Table S1.

| Left-hand | <b>Right-hand Sides</b> | Initial        |
|-----------|-------------------------|----------------|
| Sides     |                         | Concentrations |
|           |                         | ( <b>nM</b> )  |
| d[A]/dt   | $-v_1$                  | 150            |
| d[B]/dt   | $-v_1$                  | 0              |
| d[AB]/dt  | <i>v</i> <sub>1</sub>   | 150            |

S2. Single PPI network exhibiting bistability



Table S2. Reactions and rates of the kinetic model.

| Reaction | Reactions                         | Reaction rates                                                       | Parameter                 |
|----------|-----------------------------------|----------------------------------------------------------------------|---------------------------|
| number   |                                   |                                                                      | values                    |
| 1        | $A + B \leftarrow \rightarrow AB$ | $v_1 = k_{1f} \cdot [A][B] - k_{1r} \cdot [AB]$                      | $k_{1f} = 0.444116,$      |
|          |                                   |                                                                      | $k_{1r} = 0.0138931$      |
| 2        | $B \rightarrow B^*$               | $n_{12} = \frac{kc_2 \cdot [A] \cdot [B]}{kc_2 \cdot [A] \cdot [B]}$ | $kc_2 = 2.17889,$         |
|          |                                   | $v_2 = Km_2 + [B]$                                                   | $Km_2 = 48.8039$          |
| 3        | $B^* \rightarrow B$               | $V_{3}.[B *]$                                                        | $V_3 = 0.0149644,$        |
|          |                                   | $v_3 - Km_3 + [B*]$                                                  | Km <sub>3</sub> = 3.09516 |

**Table S2. Ordinary differential equations of the kinetic model.**The reaction rates aregiven in Table S2.

| Left-hand | <b>Right-hand Sides</b> | Initial Concentrations |
|-----------|-------------------------|------------------------|
| Sides     |                         | ( <b>nM</b> )          |
| d[A]/dt   | $-v_1$                  | 15                     |
| d[B]/dt   | $v_3 - v_1 - v_2$       | 100                    |
| d[AB]/dt  | <i>v</i> <sub>1</sub>   | 0                      |
| d[B*]/dt  | $v_2 - v_3$             | 0                      |

S3. Single PPI network exhibiting Sustained Oscillation



Table S3. Reactions and rates of the kinetic model.

| Reaction | Reactions                         | Reaction rates                                                              | Parameter                 |
|----------|-----------------------------------|-----------------------------------------------------------------------------|---------------------------|
| number   |                                   |                                                                             | values                    |
| 1        | $A + B \leftarrow \rightarrow AB$ | $v_1 = k_{1f} \cdot [A][B] - k_{1r} \cdot [AB]$                             | $k_{1f} = 0.00143087,$    |
|          |                                   |                                                                             | $k_{1r} = 0.000653442$    |
| 2        | $C^* \rightarrow C$               | $w_{2} = \frac{kc_{2} \cdot [A] \cdot [C *]}{kc_{2} \cdot [A] \cdot [C *]}$ | $kc_2 = 24.0512,$         |
|          |                                   | $V_2 = Km_2 + [C *]$                                                        | Km <sub>2</sub> = 151.308 |
| 3        | $C \rightarrow C^*$               | $v_{2} = \frac{V_{3}.[C]}{V_{3}.[C]}$                                       | V <sub>3</sub> = 2.69421, |
|          |                                   | $V_3 = Km_3 + [C]$                                                          | Km <sub>3</sub> = 1.93629 |
| 4        | $B^* \rightarrow B$               | $w_{4} = \frac{kc_{4} \cdot [C] \cdot [B *]}{kc_{4} \cdot [C] \cdot [B *]}$ | $kc_4 = 0.723006,$        |
|          |                                   | $V_4 = Km_4 + [B *]$                                                        | $Km_4 = 48.6098$          |
| 5        | $B \rightarrow B^*$               | $v_{-} = \frac{V_{5} \cdot [B]}{V_{5} \cdot [B]}$                           | $V_5 = 11.8224,$          |
|          |                                   | $v_5 - Km_5 + [B]$                                                          | $Km_5 = 2.2509$           |

**Table S3. Ordinary differential equations of the kinetic model.**The reaction rates aregiven in Table S3.

| Left-hand | <b>Right-hand Sides</b> | Initial Concentrations (nM) |
|-----------|-------------------------|-----------------------------|
| Sides     |                         |                             |
|           |                         |                             |
| d[A]/dt   | $-v_1$                  | 39                          |
| d[B]/dt   | $v_4 - v_1 - v_5$       | 455                         |
| d[AB]/dt  | <i>v</i> <sub>1</sub>   | 0                           |
| d[B*]/dt  | $v_5 - v_4$             | 0                           |
| d[C]/dt   | $v_2 - v_3$             | 122                         |

| d[C*]/dt | <i>v</i> <sub>3</sub> - <i>v</i> <sub>2</sub> | 0 |
|----------|-----------------------------------------------|---|
|----------|-----------------------------------------------|---|

S4. Single PPI network exhibiting Damped Oscillation



Table S4. Reactions and rates of the kinetic model.

| Reaction | Reactions                         | Reaction rates                                                           | Parameter                     |
|----------|-----------------------------------|--------------------------------------------------------------------------|-------------------------------|
| number   |                                   |                                                                          | values                        |
| 1        | $A + B \leftarrow \rightarrow AB$ | $v_1 = k_{1f} \cdot [A][B] - k_{1r} \cdot [AB]$                          | k <sub>1f</sub> =0.000021458, |
|          |                                   |                                                                          | $k_{1r} = 0.000227335$        |
| 2        | $B^* \rightarrow B$               | $n_{12} = \frac{kc_2 \cdot [A] \cdot [B *]}{kc_2 \cdot [A] \cdot [B *]}$ | kc <sub>2</sub> =6.63297,     |
|          |                                   | $V_2 = Km_2 + [B *]$                                                     | $Km_2 = 0.0555913$            |
| 3        | $B \rightarrow B^*$               | $V_{3}.[B]$                                                              | V <sub>3</sub> =13.9797,      |
|          |                                   | $\nu_3 = \frac{1}{Km_3 + [B]}$                                           | Km <sub>3</sub> = 0.0102194   |

**Table S4. Ordinary differential equations of the kinetic model.**The reaction rates aregiven in Table S4.

| Left-hand | Right-hand Sides  | Initial Concentrations |
|-----------|-------------------|------------------------|
| Sides     |                   | ( <b>nM</b> )          |
| d[A]/dt   | $-v_1$            | 25                     |
| d[B]/dt   | $v_2 - v_1 - v_3$ | 0                      |
| d[AB]/dt  | v <sub>1</sub>    | 0                      |
| d[B*]/dt  | $v_3 - v_2$       | 290                    |

S5. Single PPI network exhibiting Biphasic Response



Table S5. Reactions and rates of the kinetic model.

| Reaction | Reactions                         | Reaction rates                                                              | Parameter                     |
|----------|-----------------------------------|-----------------------------------------------------------------------------|-------------------------------|
| number   |                                   |                                                                             | values                        |
| 1        | $A + B \leftarrow \rightarrow AB$ | $v_1 = k_{1f} \cdot [A][B] - k_{1r} \cdot [AB]$                             | k <sub>1f</sub> =0.000662316, |
|          |                                   |                                                                             | $k_{1r} = 0.000701878$        |
| 2        | $B^* \rightarrow B$               | $n_{2} = \frac{kc_{2} \cdot [A] \cdot [B *]}{kc_{2} \cdot [A] \cdot [B *]}$ | kc <sub>2</sub> =2.98182,     |
|          |                                   | $V_2 = Km_2 + [B *]$                                                        | $Km_2 = 11.0657$              |
| 3        | $B \rightarrow B^*$               | $v_{2} = \frac{V_{3} [B]}{V_{3} [B]}$                                       | V <sub>3</sub> =53.6473,      |
|          |                                   | $V_3 = Km_3 + [B]$                                                          | Km <sub>3</sub> = 1880.36     |

**Table S5. Ordinary differential equations of the kinetic model.**The reaction rates aregiven in Table S5.

| Left-hand | <b>Right-hand Sides</b>                       | Initial             |
|-----------|-----------------------------------------------|---------------------|
| Sides     |                                               | Concentrations (nM) |
| d[A]/dt   | $-v_1$                                        | 50                  |
| d[B]/dt   | $v_2 - v_1 - v_3$                             | 0                   |
| d[AB]/dt  | <i>v</i> <sub>1</sub>                         | 0                   |
| d[B*]/dt  | <i>v</i> <sub>3</sub> - <i>v</i> <sub>2</sub> | 134                 |

S6. Single PPI network exhibiting Coherent Feedforward Regulation



Table S6. Reactions and rates of the kinetic model.

| Reaction | Reactions                         | Reaction rates                                                          | Parameter                 |
|----------|-----------------------------------|-------------------------------------------------------------------------|---------------------------|
| number   |                                   |                                                                         | values                    |
| 1        | $A + B \leftarrow \rightarrow AB$ | $v_1 = k_{1f} \cdot [A][B] - k_{1r} \cdot [AB]$                         | $k_{1f} = 0.00907778,$    |
|          |                                   |                                                                         | $k_{1r} = 0.0295832$      |
| 2        | $B \rightarrow B^*$               | $n_{1} = \frac{kc_{2} \cdot [A] \cdot [B]}{kc_{2} \cdot [A] \cdot [B]}$ | $kc_2 = 0.0208362,$       |
|          |                                   | $v_2 = \frac{1}{Km_2 + [B]}$                                            | Km <sub>2</sub> = 79.0018 |
| 3        | $B^* \rightarrow B$               | $V_{3} = \frac{V_{3} \cdot [B *]}{V_{3} \cdot [B *]}$                   | $V_3 = 2.37913,$          |
|          |                                   | $\nu_3 = \frac{1}{Km_3 + [B *]}$                                        | Km <sub>3</sub> = 24.4436 |

**Table S6. Ordinary differential equations of the kinetic model.**The reaction rates aregiven in Table S6.

| Left-hand | <b>Right-hand Sides</b> | Initial        |
|-----------|-------------------------|----------------|
| Sides     |                         | Concentrations |
|           |                         | ( <b>nM</b> )  |
| d[A]/dt   | $-v_1$                  | 200            |
| d[B]/dt   | $v_3 - v_1 - v_2$       | 40             |
| d[AB]/dt  | <i>v</i> <sub>1</sub>   | 0              |
| d[B*]/dt  | $v_2 - v_3$             | 0              |

#### S7. In vivo PPI examples



S8. Coupled isolated PPI event



Table S8. Reactions and rates of the kinetic model.

| Reaction | Reactions                  | Reaction rates                                  | Parameter                      |
|----------|----------------------------|-------------------------------------------------|--------------------------------|
| number   |                            |                                                 | values                         |
| 1        | $A + i \leftrightarrow Ai$ | $v_1 = k_{1f} \cdot [A][i] - k_{1r} \cdot [Ai]$ | $k_{1f}$ = 0.00005, $k_{1r}$ = |
|          |                            |                                                 | 0.002                          |
| 2        | B+i ←→ Bi                  | $v_2 = k_{2f} \cdot [B][i] - k_{2r} \cdot [Bi]$ | $k_{2f}=0.00005, k_{2r}=$      |
|          |                            |                                                 | 0.002                          |

**Table S8. Ordinary differential equations of the kinetic model.**The reaction rates aregiven in Table S8.

| Left-hand | Right-hand Sides      | Initial Concentrations |
|-----------|-----------------------|------------------------|
| Sides     |                       | ( <b>nM</b> )          |
| d[A]/dt   | $-v_1$                | 200                    |
| d[i]/dt   | $-v_1 - v_2$          | 300                    |
| d[B]/dt   | $-v_{2}$              | 200                    |
| d[Ai]/dt  | <i>v</i> <sub>1</sub> | 0                      |
| d[Bi]/dt  | <i>v</i> <sub>2</sub> | 0                      |

S9. Coupled PPI network exhibiting Sustained Oscillation



Table S9. Reactions and rates of the kinetic model.

| Reaction | Reactions                  | Reaction rates                                  | Parameter values        |
|----------|----------------------------|-------------------------------------------------|-------------------------|
| number   |                            |                                                 |                         |
| 1        | $A + i \leftrightarrow Ai$ | $v_1 = k_{1f} \cdot [A][i] - k_{1r} \cdot [Ai]$ | $k_{1f} = 0.000156153,$ |
|          |                            |                                                 | $k_{1r} = 0.0000766173$ |
| 2        | B+i ←→ Bi                  | $v_2 = k_{2f} \cdot [B][i] - k_{2r} \cdot [Bi]$ | $k_{2f} = 0.000125176,$ |
|          |                            |                                                 | $k_{2r} = 0.00208669$   |
| 3        | $B \rightarrow B^*$        | $v_2 = \frac{kc_3.[A].[B]}{kc_3.[A].[B]}$       | $kc_3 = 4.95119,$       |
|          |                            | $Km_3 + [B]$                                    | $Km_3 = 0.103278$       |
| 4        | $B^* \rightarrow B$        | $v_4 = \frac{V_4 \cdot [B *]}{V_4 \cdot [B *]}$ | $V_4 = 8.30799,$        |
|          |                            | $Km_4 + [B *]$                                  | $Km_4 = 21.4724$        |

**Table S9. Ordinary differential equations of the kinetic model.**The reaction rates aregiven in Table S9.

| Left-hand | Right-hand Sides                              | Initial Concentrations (nM) |
|-----------|-----------------------------------------------|-----------------------------|
| Sides     |                                               |                             |
| d[A]/dt   | $-v_1$                                        | 25                          |
| d[i]/dt   | $-v_1 - v_2$                                  | 74                          |
| d[B]/dt   | $v_4 - v_3 - v_2$                             | 672                         |
| d[Ai]/dt  | v <sub>1</sub>                                | 0                           |
| d[Bi]/dt  | <i>v</i> <sub>2</sub>                         | 0                           |
| d[B*]/dt  | <i>v</i> <sub>3</sub> - <i>v</i> <sub>4</sub> | 0                           |

S10. Coupled PPI network exhibiting Biphasic Response



Table S10. Reactions and rates of the kinetic model.

| Reaction | Reactions                  | Reaction rates                                  | Parameter                 |
|----------|----------------------------|-------------------------------------------------|---------------------------|
| number   |                            |                                                 | values                    |
| 1        | $A + i \leftrightarrow Ai$ | $v_1 = k_{1f} \cdot [A][i] - k_{1r} \cdot [Ai]$ | $k_{1f} = 0.0147496,$     |
|          |                            |                                                 | $k_{1r} = 0.000192892$    |
| 2        | B+i ←→ Bi                  | $v_2 = k_{2f} \cdot [B][i] - k_{2r} \cdot [Bi]$ | $k_{2f} = 0.175098,$      |
|          |                            |                                                 | $k_{2r} = 0.127203$       |
| 3        | $B \rightarrow B^*$        | $v_2 = \frac{kc_3.[A].[B]}{kc_3.[A].[B]}$       | $kc_3 = 0.136761,$        |
|          |                            | $Km_3 + [B]$                                    | $Km_3 = 10.9548$          |
| 4        | $B^* \rightarrow B$        | $v_4 = \frac{V_4 \cdot [B *]}{V_4 \cdot [B *]}$ | $V_4 = 5.2157,$           |
|          |                            | $Km_4 + [B *]$                                  | Km <sub>4</sub> = 195.135 |

| Table S10. Or  | rdinary | differential | equations | of the | kinetic | model. | The | reaction | rates | are |
|----------------|---------|--------------|-----------|--------|---------|--------|-----|----------|-------|-----|
| given in Table | S10.    |              |           |        |         |        |     |          |       |     |

| Left-hand | Right-hand Sides                              | Initial Concentrations |
|-----------|-----------------------------------------------|------------------------|
| Sides     |                                               | ( <b>nM</b> )          |
| d[A]/dt   | $-v_1$                                        | 100                    |
| d[i]/dt   | $-v_1 - v_2$                                  | 100                    |
| d[B]/dt   | $v_4 - v_3 - v_2$                             | 100                    |
| d[Ai]/dt  | <i>v</i> <sub>1</sub>                         | 0                      |
| d[Bi]/dt  | <i>v</i> <sub>2</sub>                         | 0                      |
| d[B*]/dt  | <i>v</i> <sub>3</sub> - <i>v</i> <sub>4</sub> | 0                      |

S11. Coupled PPI network exhibiting Bistability



Table S11. Reactions and rates of the kinetic model.

| Reaction | Reactions                         | Reaction rates                                    | Parameter             |
|----------|-----------------------------------|---------------------------------------------------|-----------------------|
| number   |                                   |                                                   | values                |
| 1        | $A + i \leftarrow \rightarrow Ai$ | $v_1 = k_{1f} \cdot [A][i] - k_{1r} \cdot [Ai]$   | $k_{1f} = 1.30884,$   |
|          |                                   |                                                   | $k_{1r} = 1.22917$    |
| 2        | B + i ← → Bi                      | $v_2 = k_{2f} \cdot [B][i] - k_{2r} \cdot [Bi]$   | $k_{2f} = 0.0154033,$ |
|          |                                   |                                                   | $k_{2r} = 0.0533712$  |
| 3        | $B^* \rightarrow B$               | $v_2 = \frac{kc_3. [A]. [B *]}{m}$                | $kc_3 = 0.0103728,$   |
|          |                                   | $Km_3 + [B *]$                                    | $Km_3 = 1.42502$      |
| 4        | $B \rightarrow B^*$               | $v_{4} = \frac{V_{4} \cdot [B]}{V_{4} \cdot [B]}$ | $V_4 = 0.120356,$     |
|          |                                   | $Km_4 + [B]$                                      | $Km_4 = 3.22874$      |

**Table S11. Ordinary differential equations of the kinetic model.**The reaction rates aregiven in Table S11.

| Left-hand | <b>Right-hand Sides</b> | Initial Concentrations |
|-----------|-------------------------|------------------------|
| Sides     |                         | ( <b>nM</b> )          |
| d[A]/dt   | $-v_l$                  | 70                     |
| d[i]/dt   | $-v_1 - v_2$            | 100                    |
| d[B]/dt   | $v_3 - v_4 - v_2$       | 100                    |
| d[Ai]/dt  | <i>v</i> <sub>1</sub>   | 0                      |
| d[Bi]/dt  | <i>v</i> <sub>2</sub>   | 0                      |
| d[B*]/dt  | $v_4 - v_3$             | 0                      |

S12. The MST2-Raf-1 signaling network

## a. Facilitates Sustained Oscillation



| Table S12.a. Reactions | and rates of | the kinetic model. |
|------------------------|--------------|--------------------|
|------------------------|--------------|--------------------|

| Reaction | Reactions                     | Reaction rates                                                           | Parameter values             |
|----------|-------------------------------|--------------------------------------------------------------------------|------------------------------|
| number   |                               |                                                                          |                              |
| 1        | pMST2 + pRaf1                 | $v_1$                                                                    | k <sub>1f</sub> =0.185164,   |
|          | $\leftrightarrow$ pMST2-pRaf1 | $= k_{1f} \cdot [pMST2][pRaf1]$                                          | k <sub>1r</sub> =0.0985695   |
|          |                               | $- k_{1r}.[pMST2.pRaf1]$                                                 |                              |
| 2        | $pMST2 \rightarrow MST2^*$    | $v_2 = \frac{V_2 \cdot [MST2]}{V_2 \cdot [MST2]}$                        | V <sub>2</sub> =0.0454014,   |
|          |                               | $v_2 = Km_2 + [MST2 *]$                                                  | Km <sub>2</sub> =330.376     |
| 3        | $MST2^* \rightarrow pMST2$    | $V_3.[MST2*]$                                                            | V <sub>3</sub> =0.0525323,   |
|          |                               | $V_3 = Km_3 + [pMST2]$                                                   | Km <sub>3</sub> =99.4278     |
| 4        | $LATS1 \rightarrow LATS1^*$   | $m_{12} = \frac{kc_4.[MST2*].[LATS1]}{kc_4.[MST2*].[LATS1]}$             | kc <sub>4</sub> =1.367,      |
|          |                               | $Km_4 + [LATS1]$                                                         | Km <sub>4</sub> =41.4402     |
| 5        | $LATS1^* \rightarrow LATS1$   | $w_{-} = \frac{V_5. [LATS1 *]}{V_5 V_5 V_5 V_5 V_5 V_5 V_5 V_5 V_5 V_5 $ | V <sub>5</sub> =0.757472,    |
|          |                               | $Km_5 = Km_5 + [LATS1 *]$                                                | Km5=0.581622                 |
| 6        | $Raf1^* \rightarrow pRaf1$    | $v_6$                                                                    | kc <sub>6</sub> =0.00229352, |
|          |                               | _ kc <sub>6</sub> . [LATS1 *]. [Raf1 *]                                  | Km <sub>6</sub> =0.151116    |
|          |                               | $-\frac{1}{Km_6 + [Raf1*]}$                                              |                              |
| 7        | $pRaf1 \rightarrow Raf1^*$    | $V_7.[pRaf1]$                                                            | V <sub>7</sub> =0.0387405,   |
|          |                               | $Km_7 + [pRaf1]$                                                         | Km7=0.670203                 |

| Left-hand    | <b>Right-hand Sides</b>                       | Initial             |
|--------------|-----------------------------------------------|---------------------|
| Sides        |                                               | Concentrations (nM) |
| d[pMST2]/dt  | $v_3 - v_2 - v_1$                             | 0                   |
| d[pRaf1]/dt  | $v_6 - v_7 - v_1$                             | 0                   |
| d[pMST2-     | v.                                            | 0                   |
| pRaf1]/dt    |                                               |                     |
| d[MST2]/dt   | $v_2 - v_3$                                   | 12                  |
| d[LATS1]/dt  | <i>V</i> <sub>5</sub> - <i>V</i> <sub>4</sub> | 250                 |
| d[LATS1*]/dt | <i>v</i> <sub>4</sub> - <i>v</i> <sub>5</sub> | 0                   |
| d[Raf1*]/dt  | $v_7 - v_6$                                   | 37                  |

**Table S12.a. Ordinary differential equations of the kinetic model.**The reaction rates aregiven in Table S12.a..

b. Facilitates Biphasic Response



Table S12.b. Reactions and rates of the kinetic model.

| Reaction | Reactions                   | Reaction rates                                                    | Parameter values          |
|----------|-----------------------------|-------------------------------------------------------------------|---------------------------|
| number   |                             |                                                                   |                           |
| 1        | pMST2 + pRaf1               | <i>v</i> <sub>1</sub>                                             | $k_{1f} = 0.0119962,$     |
|          | $\leftrightarrow$ pMST2-    | $= k_{1f}.[pMST2][pRaf1]$                                         | $k_{1r} = 0.111344$       |
|          | pRaf1                       | $- k_{1r}.[pMST2.pRaf1]$                                          |                           |
| 2        | $pMST2 \rightarrow MST2^*$  | $v_2 = \frac{V_2.[MST2]}{V_2.[MST2]}$                             | $V_2 = 0.0363027,$        |
|          |                             | $Km_2 + [MST2*]$                                                  | $Km_2 = 6.98519$          |
| 3        | $MST2^* \rightarrow pMST2$  | $v_{2} = \frac{V_{3}.[MST2*]}{V_{3}.[MST2*]}$                     | $V_3 = 0.147123,$         |
|          |                             | $V_{3} = Km_{3} + [pMST2]$                                        | Km <sub>3</sub> = 31.0557 |
| 4        | $LATS1 \rightarrow LATS1^*$ | $n_{\star} = \frac{kc_{4}. [MST2 *]. [LATS1]}{kc_{4}}$            | $kc_4 = 0.307658,$        |
|          |                             | $Km_4 + [LATS1]$                                                  | $Km_4 = 2.56876$          |
| 5        | $LATS1^* \rightarrow LATS1$ | $v_{r} = \frac{V_{5} \cdot [LATS1 *]}{V_{5} \cdot [LATS1 *]}$     | $V_{5}=$ 3.20068,         |
|          |                             | $Km_5 + [LATS1 *]$                                                | $Km_5 = 0.0641184$        |
| 6        | $Rafl^* \rightarrow pRafl$  | $v_{c} = \frac{kc_{6}.[LATS1*].[Raf1*]}{kc_{6}.[LATS1*].[Raf1*]}$ | $kc_6 = 0.00963654,$      |
|          |                             | $Km_6 + [Raf1*]$                                                  | $Km_6 = 0.0688294$        |
| 7        | $pRaf1 \rightarrow Raf1^*$  | $v_7 = \frac{V_7 \cdot [pRaf1]}{V_7 \cdot [pRaf1]}$               | $V_{7}=$ 0.207988,        |
|          |                             | $Km_7 + [pRaf1]$                                                  | $Km_7 = 62.1023$          |

| Left-hand    | <b>Right-hand Sides</b>                       | Initial Concentrations (nM) |
|--------------|-----------------------------------------------|-----------------------------|
| Sides        |                                               |                             |
| d[pMST2]/dt  | $v_3 - v_2 - v_1$                             | 0                           |
| d[pRaf1]/dt  | $v_6 - v_7 - v_1$                             | 0                           |
| d[pMST2-     | W <sub>1</sub>                                | 0                           |
| pRaf1]/dt    |                                               | 0                           |
| d[MST2]/dt   | $v_2 - v_3$                                   | 100                         |
| d[LATS1]/dt  | <i>v</i> <sub>5</sub> - <i>v</i> <sub>4</sub> | 85                          |
| d[LATS1*]/dt | <i>v</i> <sub>4</sub> - <i>v</i> <sub>5</sub> | 0                           |
| d[Raf1*]/dt  | <i>v</i> <sub>7</sub> - <i>v</i> <sub>6</sub> | 38                          |

**Table S12.b. Ordinary differential equations of the kinetic model.**The reaction rates aregiven in Table S12.b..

S13.A. Raf- MEK-ERK signaling network facilitates oscillation



| Table S13.A. Reactions ar | d rates of the kinetic model. |
|---------------------------|-------------------------------|
|---------------------------|-------------------------------|

| Reaction | Reactions               | Reaction rates                                                                      | Parameter               |
|----------|-------------------------|-------------------------------------------------------------------------------------|-------------------------|
| number   |                         |                                                                                     | values                  |
| 1        | $Raf \rightarrow Raf^*$ | $V_1 \cdot [Raf]$                                                                   | V <sub>3</sub> =1.227,  |
|          |                         | $\nu_1 = \frac{1}{Km_1 + [Raf]}$                                                    | Km <sub>1</sub> =1218   |
| 2        | $Raf^* \rightarrow Raf$ | $V_2.[Raf*]$                                                                        | V <sub>2</sub> =1.034,  |
|          |                         | $v_2 = Km_2 + [Raf *]$                                                              | Km <sub>2</sub> =254    |
| 3        | $MEK \rightarrow MEK^*$ | $v_{2} = \frac{kc_{3}.[Raf *].[MEK]}{k}$                                            | kc <sub>3</sub> =0.006, |
|          |                         | $Km_3 + [MEK]$                                                                      | Km <sub>3</sub> =387    |
| 4        | $MEK^* \rightarrow MEK$ | $v_{4} = \frac{V_{4} \cdot [MEK *]}{V_{4} \cdot [MEK *]}$                           | V <sub>4</sub> =0.186,  |
|          |                         | $v_4 = Km_4 + [MEK *]$                                                              | Km <sub>4</sub> =90     |
| 5        | $ERK \rightarrow ERK^*$ | $u_{7} = \frac{kc_{5}.[MEK *].[ERK]}{k}$                                            | kc <sub>5</sub> =0.05,  |
|          |                         | $V_5 = Km_5 + [ERK]$                                                                | Km <sub>5</sub> =2      |
| 6        | $ERK^* \rightarrow ERK$ | $v_{c} = \frac{V_{6} \cdot [ERK *]}{V_{6} \cdot [ERK *]}$                           | V <sub>6</sub> =3.305,  |
|          |                         | $V_6 = Km_6 + [ERK *]$                                                              | Km <sub>6</sub> =1458   |
| 7        | Raf → ipRaf             | $v_{7} = \frac{kc_{7} \cdot [ERK *] \cdot [Raf]}{kc_{7} \cdot [ERK *] \cdot [Raf]}$ | kc7=0.006,              |
|          |                         | $Km_7 + [Raf]$                                                                      | Km <sub>7</sub> =1      |
| 8        | $ipRaf \rightarrow Raf$ | $v_{0} = \frac{V_{8}.[ipRaf]}{V_{1}$                                                | $V_8 = 0.404,$          |
|          |                         | $Km_8 + [ipRaf]$                                                                    | Km <sub>8</sub> =3      |

**Table S13.A. Ordinary differential equations of the kinetic model.**The reaction rates aregiven in Table S13.A.

| Left-hand Sides | <b>Right-hand Sides</b>                       | Initial Concentrations (nM) |
|-----------------|-----------------------------------------------|-----------------------------|
| d[Raf]/dt       | $v_1 + v_8 - v_2 - v_7$                       | 100                         |
| d[Raf*]/dt      | $v_2 - v_1$                                   | 0                           |
| d[ipRaf]/dt     | <i>v</i> <sub>7</sub> - <i>v</i> <sub>8</sub> | 0                           |
| d[MEK]/dt       | $v_4 - v_3$                                   | 100                         |
| d[MEK*]/dt      | $v_3 - v_4$                                   | 0                           |
| d[ERK]/dt       | <i>v</i> <sub>6</sub> - <i>v</i> <sub>5</sub> | 100                         |
| d[ERK*]/dt      | <i>v</i> <sub>5</sub> - <i>v</i> <sub>6</sub> | 0                           |

S13.B. Raf- RKIP-MEK signaling network facilitates oscillation



| Table S13.B. Reactions an | d rates of the ki | inetic model. |
|---------------------------|-------------------|---------------|
|---------------------------|-------------------|---------------|

| Reaction | Reactions                         | Reaction rates                           | Parameter                |
|----------|-----------------------------------|------------------------------------------|--------------------------|
| number   |                                   |                                          | values                   |
| 1        | $Raf \rightarrow Raf^*$           | $V_1 = V_1 \cdot [Raf]$                  | V <sub>3</sub> =0.107,   |
|          |                                   | $\nu_1 = \frac{1}{Km_1 + [Raf]}$         | Km1=130                  |
| 2        | $Raf^* \rightarrow Raf$           | $V_2 = V_2 \cdot [Raf *]$                | V <sub>2</sub> =0.198,   |
|          |                                   | $V_2 = Km_2 + [Raf *]$                   | Km <sub>2</sub> =111     |
| 3        | $MEK \rightarrow MEK^*$           | $n_{2} = \frac{kc_{3}.[Raf *].[MEK]}{k}$ | kc <sub>3</sub> =0.616,  |
|          |                                   | $V_3 = Km_3 + [MEK]$                     | Km3=0.1                  |
| 4        | $MEK^* \rightarrow MEK$           | $V_4.[MEK *]$                            | V <sub>4</sub> =4.572,   |
|          |                                   | $v_4 = \frac{1}{Km_4 + [MEK *]}$         | Km4=0.1                  |
| 5        | RKIP + MEK                        | $v_5 = k_{5f}.[RKIP][MEK]$               | k <sub>5f</sub> =0.005,  |
|          | $\leftrightarrow$                 | $-k_{5r}$ . [RKIP. MEK]                  | k <sub>5r</sub> =0.001   |
|          | RKIP.MEK                          |                                          |                          |
| 6        | RKIP + Raf                        | $v_6 = k_{6f}.[RKIP][Raf]$               | k <sub>6f</sub> =0.005,  |
|          | $\leftarrow \rightarrow$ RKIP.Raf | $-k_{6r}$ . [RKIP. Raf]                  | k <sub>6r</sub> =0.00009 |

**Table S13.B. Ordinary differential equations of the kinetic model.**The reaction rates aregiven in Table S13.B.

| Left-hand Sides | <b>Right-hand Sides</b> | Initial Concentrations (nM) |
|-----------------|-------------------------|-----------------------------|
| d[Raf]/dt       | $v_1 - v_2 - v_6$       | 100                         |
| d[Raf*]/dt      | $v_2 - v_1$             | 0                           |
| d[MEK]/dt       | $v_4 - v_3 - v_5$       | 100                         |
| d[MEK*]/dt      | $v_3 - v_4$             | 0                           |
| d[RKIP.Raf]/dt  | <i>v</i> <sub>6</sub>   | 0                           |
| d[RKIP.MEK]/dt  | <i>v</i> <sub>5</sub>   | 0                           |
| d[RKIP]/dt      | $-v_6 - v_5$            | 100                         |

S13.C. Raf- RKIP-MEK-ERK signaling network facilitates oscillation



Table S13.C. Reactions and rates of the kinetic model.

| Reaction | Reactions                         | Reaction rates                                                                | Parameter                |
|----------|-----------------------------------|-------------------------------------------------------------------------------|--------------------------|
| number   |                                   |                                                                               | values                   |
| 1        | $Raf \rightarrow Raf^*$           | $V_1.[Raf]$                                                                   | V <sub>3</sub> =0.368,   |
|          |                                   | $\nu_1 = Km_1 + [Raf]$                                                        | Km1=0.1                  |
| 2        | $Raf^* \rightarrow Raf$           | $v_{2} = \frac{V_{2} \cdot [Raf *]}{V_{2} \cdot [Raf *]}$                     | V <sub>2</sub> =61.37,   |
|          |                                   | $Km_2 + [Raf *]$                                                              | Km <sub>2</sub> =3       |
| 3        | $MEK \rightarrow MEK^*$           | $v_2 = \frac{V_3.[MEK]}{V_3.[MEK]}$                                           | V <sub>3</sub> =0.152,   |
|          |                                   | $Km_3 + [MEK]$                                                                | Km <sub>3</sub> =5494    |
| 4        | $MEK^* \rightarrow MEK$           | $v_4 = \frac{V_4 \cdot [MEK *]}{V_4 \cdot [MEK *]}$                           | V <sub>4</sub> =8.48,    |
|          |                                   | $Km_4 + [MEK *]$                                                              | Km <sub>4</sub> =25485   |
| 5        | $ERK \rightarrow ERK^*$           | $v_{r} = \frac{kc_{5}.[MEK *].[ERK]}{k}$                                      | kc <sub>5</sub> =0.977,  |
|          |                                   | $Km_5 + [ERK]$                                                                | Km5=2                    |
| 6        | $ERK^* \rightarrow ERK$           | $v_c = \frac{V_6.[ERK*]}{V_6.[ERK*]}$                                         | V <sub>6</sub> =0.432,   |
|          |                                   | $Km_6 + [ERK *]$                                                              | Km <sub>6</sub> =0.02    |
| 7        | Raf → ipRaf                       | $v_7 = \frac{kc_7 \cdot [ERK *] \cdot [Raf]}{kc_7 \cdot [ERK *] \cdot [Raf]}$ | kc <sub>7</sub> =1.6,    |
|          |                                   | $Km_7 + [Raf]$                                                                | Km <sub>7</sub> =530     |
| 8        | ipRaf → Raf                       | $v_{0} = \frac{V_{8}.[ipRaf]}{V_{1}$                                          | V <sub>8</sub> =0.678,   |
|          |                                   | $Km_8 + [ipRaf]$                                                              | Km <sub>8</sub> =1       |
| 9        | RKIP + MEK                        | $v_9 = k_{9f}.[RKIP][MEK]$                                                    | k <sub>9f</sub> =0.0007, |
|          | $\leftrightarrow$                 | $-k_{9r}$ . [RKIP. MEK]                                                       | k <sub>9r</sub> =0.00004 |
|          | RKIP.MEK                          |                                                                               |                          |
| 10       | RKIP + Raf                        | $v_{10} = k_{10f} \cdot [RKIP][Raf]$                                          | $k_{10f} = 0.001,$       |
|          | $\leftarrow \rightarrow$ RKIP.Raf | $- k_{10r}.[RKIP.Raf]$                                                        | k <sub>10r</sub> =0.002  |

| Left-hand Sides | <b>Right-hand Sides</b>                       | Initial Concentrations (nM) |
|-----------------|-----------------------------------------------|-----------------------------|
| d[Raf]/dt       | $v_1 + v_8 - v_2 - v_7 - v_{10}$              | 100                         |
| d[Raf*]/dt      | $v_2 - v_1$                                   | 0                           |
| d[ipRaf]/dt     | <i>v</i> <sub>7</sub> - <i>v</i> <sub>8</sub> | 0                           |
| d[MEK]/dt       | $v_4 - v_3 - v_9$                             | 100                         |
| d[MEK*]/dt      | $v_3 - v_4$                                   | 0                           |
| d[ERK]/dt       | <i>v</i> <sub>6</sub> - <i>v</i> <sub>5</sub> | 100                         |
| d[ERK*]/dt      | $v_5 - v_6$                                   | 0                           |
| d[RKIP.Raf]/dt  | <i>v</i> <sub>10</sub>                        | 0                           |
| d[RKIP.MEK]/dt  | <i>V</i> 9                                    | 0                           |
| d[RKIP]/dt      | $-v_9 - v_{10}$                               | 100                         |

**Table S13.C. Ordinary differential equations of the kinetic model.**The reaction rates aregiven in Table S13.C.

S14. Akt-YAP-14.3.3 signaling network facilitates Bistability



Table S14. Reactions and rates of the kinetic model.

| Reaction | Reactions                                   | Reaction rates                                                                    | Parameter               |
|----------|---------------------------------------------|-----------------------------------------------------------------------------------|-------------------------|
| number   |                                             |                                                                                   | values                  |
| 1        | $Akt \rightarrow Akt^*$                     | $n_{1} = \frac{kc_{1} \cdot [PDK1] \cdot [Akt]}{kc_{1} \cdot [PDK1] \cdot [Akt]}$ | $kc_1 = 0.02,$          |
|          |                                             | $V_1 = Km_1 + [Akt]$                                                              | $Km_1 = 3259$           |
| 2        | $Akt^* \rightarrow Akt$                     | $v_2 = \frac{V_2 \cdot [B]}{V_2 \cdot [B]}$                                       | $V_2 = 14.79,$          |
|          |                                             | $Km_2 + [B]$                                                                      | $Km_2 = 806$            |
| 3        | $YAP^* \rightarrow pYAP$                    | $v_{2} = \frac{kc_{3}.\left[Akt *\right].\left[YAP *\right]}{kc_{3}}$             | kc <sub>3</sub> =7.39,  |
|          |                                             | $Km_3 + [YAP *]$                                                                  | $Km_3 = 203$            |
| 4        | $pYAP \rightarrow YAP^*$                    | $v_{4} = \frac{V_{4} \cdot [pYAP]}{V_{4} \cdot [pYAP]}$                           | V <sub>4</sub> =0.257,  |
|          |                                             | $V_4 = Km_4 + [pYAP]$                                                             | $Km_4 = 0.6$            |
| 5        | $14-3-3 + pYAP \leftrightarrow \rightarrow$ | $v_5 = k_{5f}.[14.3.3][pYAP]$                                                     | k <sub>5f</sub> =0.094, |
|          | 14-3-3.pYAP                                 | $-k_{5r}$ . [14.3.3                                                               | k <sub>5r</sub> =0.014  |
|          |                                             | - pYAP]                                                                           |                         |
| 6        | $14-3-3 + PDK1 \leftarrow \rightarrow$      | $v_6 = k_{6f}.[14.3.3][PDK1]$                                                     | k <sub>6f</sub> =0.019, |
|          | 14-3-3.PDK1                                 | $-k_{6r}$ . [14.3.3                                                               | k <sub>6r</sub> =0.059  |
|          |                                             | -PDK1]                                                                            |                         |

| Left-hand Sides   | <b>Right-hand Sides</b> | Initial Concentrations (nM) |
|-------------------|-------------------------|-----------------------------|
| d[PDK1]/dt        | $-v_{6}$                | 300                         |
| d[Akt]/dt         | $v_2 - v_1$             | 10                          |
| d[Akt*]/dt        | $v_1 - v_2$             | 0                           |
| d[pYAP]/dt        | $v_3 - v_4 - v_5$       | 0                           |
| d[YAP*]/dt        | $v_4 - v_3$             | 2981                        |
| d[14-3-3]/dt      | $-v_5 - v_6$            | 1512                        |
| d[14-3-3.pYAP]/dt | $-v_{5}$                | 0                           |
| d[14-3-3.PDK1]/dt | $-v_{6}$                | 0                           |

**Table S14. Ordinary differential equations of the kinetic model.**The reaction rates aregiven in Table S14.

#### S15. Alternate PPI coupling strategies



S16. Analytical Solution for PPI Dynamic Regulation Pattern

#### a. PPI event with no intermediates



#### b. PPI event with one intermediate



$$\frac{d[C]}{dt} = -ka2 \cdot \frac{1}{[A]} \cdot X \cdot [C] + kd2 \cdot [BC] \qquad \longrightarrow 4$$
$$\Rightarrow \frac{d[C]}{dt} \alpha - \frac{1}{[A]}$$

#### c. PPI event with two intermediates



#### d. PPI event with three intermediates

$$\begin{array}{l} & \overset{AB}{}_{B} & \overset{AB}{}_{L} & \overset{AB}{}_{L} \\ & \overset{B}{}_{C} & \overset{D}{}_{D} \\ & \overset{CD}{}_{D} & \overset{D}{}_{E} \\ \end{array} \\ & \overset{d[E]}{dt} = -ka4. \ [D]. \ [E] + kd4. \ [DE] & \longrightarrow \ (8) \\ \end{array}$$
From (7),  

$$[D] = \frac{1}{[A]} \cdot \frac{1}{Y.ka3} \left( kd3. \ [CD] - \frac{d[D]}{dt} \right)$$

Let 
$$\frac{1}{Y.ka3} \left( kd3. [CD] - \frac{d[D]}{dt} \right) = Z$$
  
 $[D] = \frac{1}{[A]} Z \longrightarrow 9$   
Substituting  $9$  in  $(8)$ ,

$$\frac{d[E]}{dt} = -k\alpha 4. \frac{1}{[A]}. Z. [E] + kd4. [DE]$$
$$\Rightarrow \frac{d[E]}{dt}\alpha - \frac{1}{[A]}$$

### 17. Protein Interaction Domains

| Туре                       | Motif         | Example Proteins |
|----------------------------|---------------|------------------|
|                            |               | ΡLCγ             |
|                            |               | STAT             |
|                            | SH2 Domain    | PI3K             |
|                            | PTB Domain    | IRS              |
|                            | 14-3-3 Domain |                  |
|                            | SH3 Domain    | Grb2             |
|                            |               | PSD-95           |
|                            |               | PSD-93           |
|                            |               | SAP102           |
|                            |               | SAP97            |
|                            | PDZ Domain    | GRIP1            |
|                            | WW Domain     | ITCH             |
|                            |               | Eph receptor     |
|                            | SAM Domain    | STIM             |
|                            | CH Domain     | parvin           |
|                            |               | talin            |
|                            | FERM Domain   | FAK              |
|                            |               | FcRγ             |
|                            |               | TCR              |
|                            |               | FCeRI            |
|                            | ITAM          | Ig               |
|                            |               | LIN11            |
|                            |               | ISL1             |
|                            |               | MEC3             |
|                            |               | Lasp-1           |
| Protein-Protein            |               | PINCH            |
| Interactions               | LIM Domain    | paxillin         |
|                            | BAR Domain    | SNX family       |
|                            |               | PTEN             |
|                            |               | РКС              |
|                            | C2 Domain     | synaptotagmins   |
|                            | ENTH Domain   | Actin            |
|                            |               | PLC              |
|                            |               | РКВ              |
|                            |               | PLD              |
|                            |               | Btk              |
|                            | PH Domain     | IRS              |
|                            | PX Domain     | SNX family       |
|                            |               | EEA1             |
| Protein-Lipid Interactions | FYVE Domain   | PIKfyve          |