Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information (ESI)

"Computational modeling reveals signaling subnetworks with distinct functional roles in the regulation of TNF production"

by Maurizio Tomaiuolo, Melissa Kottke, Ronald W. Matheny Jr., Jaques Reifman,* and Alexander Y. Mitrophanov

Contents

- 1. Supplementary Tables S1-S3
- 2. Supplementary Figures S1-S9
- **3. MATLAB Code Description**

1. Supplementary Tables

Table S1. Model reactions and parameters. Parameter names in the table are the same as in the MATLAB code. The numbers in parentheses in the right-most column are the literature references (see the end of this document) for the corresponding parameter values.

IκB and NFκB Cellular Localization Reactions							
#	Reaction	Parameter			Category	Localization	Parameter value
							source
		Name	Value	Unit			
1	lκBα → lκBαn	in_a	9×10⁻²	min⁻¹	Import	Undefined	(1)
2	lκBε → lκBεn	in_e	4.5×10⁻²	min⁻¹	Import	Undefined	(1)
3	lκBαn → lκBα	ex_a	1.2×10 ⁻²	min⁻¹	Export	Undefined	(1)
4	lκBεn → lκBε	ex_e	1.2×10 ⁻²	min⁻¹	Export	Undefined	(1)
5	NFκBIκBα → NFκBIκBαn	in_2an	0.276	min ⁻¹	Import	Undefined	(1)
6	NFκΒΙκΒε → NFκΒΙκΒεn	in_2en	0.138	min⁻¹	Import	Undefined	(1)
7	$NF\kappa BI\kappa B\alpha n \rightarrow NF\kappa BI\kappa B\alpha$	ex_2an	0.828	min⁻¹	Export	Undefined	(1)
8	NFκΒΙκΒεn → NFκΒΙκΒε	ex_2en	0.414	min ⁻¹	Export	Undefined	(1)
9	NFκB → NFκBn	in_n	5.4	min ⁻¹	Import	Undefined	(1)
10	$NF\kappa Bn \rightarrow NF\kappa B$	ex_n	4.8×10⁻³	min ⁻¹	Export	Undefined	(1)
	IxB Protein Degradation Reactions						
11	IκBαn → Ø	pd_n_a	1.2×10 ⁻²	min⁻¹	Protein degradation	Nucleus	(1)
12	lκBεn → Ø	pd_n_e	0.18	min⁻¹	Protein degradation	Nucleus	(1)
13	$NF\kappa BI\kappa B\alpha n \rightarrow \emptyset$	pd_n_2an	6×10⁻⁵	min⁻¹	Protein degradation	Nucleus	(1)
14	$NF\kappa BI\kappa B\epsilon n ightarrow \emptyset$	pd_n_2en	6×10⁻⁵	min⁻¹	Protein degradation	Nucleus	(1)
15	NFκBIκBα → Ø	pd_c_2an	6×10⁻⁵	min⁻¹	Protein degradation	Cytoplasm	(1)
16	$NF\kappa BI\kappa B\epsilon \rightarrow Ø$	pd_c_2en	6×10⁻⁵	min⁻¹	Protein degradation	Cytoplasm	(1)
		IкВ:NFкB Associat	tion and Dissoci	ation Reactions			
17	ΝΓκΒ + ΙκΒα → ΝΓκΒΙκΒα	a_c_an	30	µM⁻¹ min⁻¹	Association	Cytoplasm	(1)
18	NFκB + ΙκBε \rightarrow NFκBΙκBε	a_c_en	30	µM ⁻¹ min ⁻¹	Association	Cytoplasm	(1)
19	NFκBn + IκBαn → NFκBIκBαn	a_n_an	30	µM ⁻¹ min ⁻¹	Association	Nucleus	(1)
20	NFκBn + ΙκΒεn → NFκBIκBεn	a_n_en	30	µM⁻¹ min⁻¹	Association	Nucleus	(1)
21	ΝFκΒΙκΒα → NFκB + ΙκΒα	d_c_an	6×10⁻⁵	min⁻¹	Dissociation	Cytoplasm	(1)
22	ΝFκΒΙκΒε → ΝFκΒ + ΙκΒε	d_c_en	6×10⁻⁵	min⁻¹	Dissociation	Cytoplasm	(1)
23	NFκBIκBαn → NFκBn + IκBαn	d_n_an	6×10⁻⁵	min⁻¹	Dissociation	Nucleus	(1)
24	NFκBIκBεn → NFκBn + IκBεn	d_n_en	6×10⁻⁵	min⁻¹	Dissociation	Nucleus	(1)
		IKK-mediated	IKB Degradation	Reactions			
25	IKK + ΙκΒα \rightarrow ΙΚΚ	pd_c_2ai	1.8	µM⁻¹ min⁻¹	Protein degradation	Cytoplasm	Modified from (1)
26	IKK + ΙκΒε \rightarrow ΙΚΚ	pd_c_2ei	0.9	µM⁻¹ min⁻¹	Protein degradation	Cytoplasm	Modified from (1)
27	IKK + NFκBIκBan \rightarrow IKK + NFκB	pd_c_3ain	1.8	µM⁻¹ min⁻¹	Protein degradation	Cytoplasm	Modified from (1)
28	IKK + NFκBIκBεn \rightarrow IKK + NFκB	pd_c_3ain	0.9	µM⁻¹ min⁻¹	Protein degradation	Cytoplasm	Modified from (1)
	Volu	me Ratio and Gene	e Transcription F	Function Parameter	ers		
29		cnvr	3	Dimensionless	Cytoplasm to nucleus	Undefined	(2)

					volume ratio		
					Maximum gene		
30		mmVmax	2	μΜ	transcription rate	Undefined	Assumed
31		mmKm	0.15	uМ	Michaelis constant	Undefined	Assumed
32		mmHo	0.15	Dimonsionloss		Undefined	Assumed
32			1	Dimensioniess	Poprospor function	Undenned	Assumeu
33		a _{rep}	0.1	Dimensionless		Undefined	Assumed
					Doprossor function		
34		b _{rep}	0.006	μΜ		Undefined	Assumed
25		k	0.006		Lobibition strength	Undofined	Accumed
30				µivi	Innibilion strength	Undenned	Assumed
			Protein Synthes	sis Reactions	NEvD induced pro		
36	$NF\kappa Bn \rightarrow NF\kappa Bn + pre-I\kappa B\alpha t$	prs_an	5×10 ⁻³	min ⁻¹	mRNA synthesis	Nucleus	Fitted
07			<u> </u>	· -1	pre-mRNA		
37	pre-IKBat $\rightarrow \emptyset$	prd_a	0	min	degradation	Nucleus	Assumed
			10	· -1	Spliceosome		F 111 1
38	pre-ikBat + Spliceosome \rightarrow pre-ikBat:Spliceosome	a_n_spa	10	min	association	Nucleus	Fitted
					pre-mRNA		
39	Ø → pre-lkBαt	prs a	7×10⁻⁵	min ⁻¹	constitutive	Nucleus	(1)
					synthesis	Hubbub	(-)
				1	Mature mRNA		
40	pre-IkBat: Spliceosome \rightarrow IkBat + Spliceosome	rs_a	10	min '	release	Nucleus	Fitted
41	lκBαt → Ø	rd a	3 5×10 ⁻²	min ⁻¹	mRNA degradation	Cytoplasm	(1)
42	IkBut → IkBu		0.25	min ⁻¹	Protein synthesis	Cytoplasm	(1)
43	$I\kappa B\alpha \rightarrow \emptyset$	pd_c_a	0.12	min ⁻¹	Protein degradation	Cytoplasm	(1)
		IKBE mRNA and	Protein Synthes	sis Reactions	· · · · · · · · · · · · · · · · · · ·	eytepidein	(•)
				. 1	NEKB induced pre-		
44	NFκBn → NFκBn + pre-lκBεt	prs_en	6×10 ⁻³	min ⁻ '	mRNA synthesis	Nucleus	Fitted
			_	. 1	pre-mRNA		
45	pre-IκBεt → Ø	prd_e	0	min ⁻ '	degradation	Nucleus	Assumed
					Spliceosome		
46	pre-IkBt + Spliceosome \rightarrow pre-IkBt:Spliceosome	a_n_spe	10	min⁻'	association	Nucleus	Fitted
			c		pre-mRNA basal		
47	Ø → pre-lĸBɛt	prs_e	1×10⁵°	min ⁻ '	synthesis	Nucleus	(1)
					Mature mRNA		
48	pre-IkBt: Spliceosome \rightarrow IkBt + Spliceosome	rs_e	0.1	min ⁻ '	release	Nucleus	Fitted
49	lĸBɛt → Ø	rd e	4×10 ⁻³	min ⁻¹	mRNA degradation	Cytoplasm	(1)
50	IKBET -> IKBE		2 5×10 ⁻²	min ⁻¹	Protein synthesis	Cytoplasm	(1)
51	$I \kappa B \epsilon \rightarrow \emptyset$	pd_o_e	0.18	min ⁻¹	Protein degradation	Cytoplasm	(1)
51		$\Delta 20 \text{ mRNA and}$	Protein Synthes	is Reactions	1 lotelli degradation	Oytopiasin	(1)
			r ioteni Synthes		NErB induced pre-		
52	NFκBn → NFκBn + pre-A20t	prs_a20n	3×10 ^{-₄}	min ⁻¹	mRNA synthesis	Nucleus	Fitted
53	pre-A20t $\rightarrow Ø$	prd_a20	0	min⁻¹	dogradation	Nucleus	Assumed
					Splicoscome		
54	pre-A20t + Spliceosome \rightarrow pre-A20t:Spliceosome $$	a_n_spa20	10	min⁻¹	association	Nucleus	Fitted
55	$\emptyset \rightarrow pre-A20t$	prs_a20	0	min ⁻¹	synthesis	Nucleus	Modified from (1)
56	pre-A20t: Spliceosome A20t + Spliceosome	rs 220	5×10 ⁻³	min ⁻¹	Mature mDNA	Nucloue	Fitted
50	pre-Azor. Spinceosonne \rightarrow Azor $+$ Spinceosonne	15_420	5^10	111111	Mature mixinA	INUCIEUS	Filleu

					release		
57	A20t $\rightarrow \emptyset$	rd a20	3 5×10 ⁻²	min ⁻¹	mRNA degradation	Cytoplasm	(1)
58	$A20t \rightarrow A20$	ns_c_a20	0.0 10	min ⁻¹	Protein synthesis	Cytoplasm	(1)
59	$A20 \rightarrow \emptyset$	nd c a20	2 9x10 ⁻³	min ⁻¹	Protein degradation	Cytoplasm	(1)
00	120 / 0	NF mRNA Protein	Synthesis and F	xport Reactions	1 lotein degradation	Oytopidom	(')
	,		oynancolo ana E		NEKB induced pre-		
60	NFκBn → NFκBn + pre-TNFt	prs_t	1.6×10⁻²	min	mRNA synthesis	Nucleus	Fitted
				1	nre-mRNA		
61	$Pre-TNFt \to \emptyset$	prd_t	0	min ⁻¹	degradation	Nucleus	Assumed
					Spliceosome		
62	pre-TNFt + Spliceosome → pre-TNFt:Spliceosome	a_n_spt	10	min ⁻¹	association	Nucleus	Fitted
					Mature mRNA		
63	pre-TNFt: Spliceosome → TNFt + Spliceosome	rs_t	10	min ⁻¹	release	Nucleus	Fitted
64	TNFt \ Ø	rd t	1.4×10^{-2}	min ⁻¹	mPNA degradation	Cytoplasm	(3)
65			1.4~10	min ⁻¹	Protoin synthosis	Cytoplasm	(3) Fittod
66		ps_c_t	2×10 ⁻³	min ⁻¹	Protein degradation	Cytoplasm	(2)
67	$\frac{1107 \rightarrow 10}{100}$	pu_c_i	3^10 1.5×10 ⁻⁴	min ⁻¹	Evport	Cytopiasin	(2)
60			1.5×10	min ⁻¹	EXPUIL Dratain degradation	Extracellulor	(2)
68	$INFe \rightarrow \emptyset$	pa_e_t	5×10	min Forma of Data Affancia	Protein degradation	Extracellular	(4)
	IF	N-β MRNA, Protei	n Synthesis and	Export Reactions			
69	pIRF3n → pIRF3n + pre-IFNt	prs i	1×10 ⁻²	min ⁻¹	IRF3 induced pre-	Nucleus	Fitted
		P * -	-		mRNA synthesis		
70	pre-IFNt → Ø	prd ifn	0	min ⁻¹	pre-mRNA	Nucleus	Assumed
	P. C	P	-		degradation		
71	pre-IENt + Spliceosome \rightarrow pre-IENt Spliceosome	a n spifn	10	min ⁻¹	Spliceosome	Nucleus	Fitted
		aop			association		
72	pre-IENt' Spliceosome \rightarrow IENt + Spliceosome	rs ifn	10	min ⁻¹	Mature mRNA	Nucleus	Fitted
					release		
73	$IFNt \to \emptyset$	rd_ifn	1.5×10 ⁻	min⁻′	mRNA degradation	Cytoplasm	Fitted
74	$IFNt \to IFN$	ps_c_ifn	5×10 ⁻²	min	Protein synthesis	Cytoplasm	Fitted
75	$IFN \to Ø$	pd_c_ifn	1.9×10 ⁻²	min ⁻¹	Protein degradation	Cytoplasm	Fitted
76	$IFN \to IFNe$	ex_ifn	1×10 ⁻²	min⁻¹	Export		Fitted
77	$IFNe \to \emptyset$	pd_e_ifn	2.5×10 ⁻³	min ⁻¹	Protein degradation	Extracellular	Fitted
	IL	10 mRNA, Proteir	n Synthesis and I	Export Reactions			
70		nro il	7×10-3	min ⁻¹	IRF3 induced pre-	Nucleure	Fitted
10	$pCREBIT \rightarrow pCREBIT + pTe-TLTOL$	prs_ii	/*10	TTHET	mRNA synthesis	inucleus	Filled
70	nro II 10t Ø	ord il	0	min ⁻¹	pre-mRNA	Nucleure	Accumed
79	pre-IL IUt $\rightarrow \emptyset$	pra_ii	0	min	degradation	inucieus	Assumed
00	and II 40th California and II 40th California and		40		Spliceosome	Nicolaura	Eitte d
80	pre-IL10t + Spliceosome \rightarrow pre-IL10t:Spliceosome	a_n_spil	10	min	association	Nucleus	Fitted
	*		10	1	Mature mRNA		
81	pre-IL10t: Spliceosome \rightarrow IL10t + Spliceosome	rs_il	10	min	release	Nucleus	Fitted
82	$IL10t \rightarrow Ø$	rd il	5×10 ⁻²	min⁻¹	mRNA degradation	Cytoplasm	Fitted
83	$11 10t \rightarrow 11 10$	ps.c.il	7×10 ⁻²	min ⁻¹	Protein synthesis	Cytoplasm	Fitted
84	$ 10 \rightarrow \emptyset$	pd_c_ii	2×10 ⁻³	min ⁻¹	Protein degradation	Cytoplasm	Fitted
85		0" ey_il	1.5×10 ⁻⁴	min ⁻¹	Fynort	Sytopidoin	Fitted
86		nd e il	7×10 ⁻⁵	min ⁻¹	Protein degradation	Extracellular	Fitted
00			VA and Protoin S	wathoosis			
07	$pATE1p \rightarrow pATE1p + pro DUCD1t$		va allu Pioleifi S	min ⁻¹	ATE induced pro	Nucleure	Fitted
0/	pATEIII → pATEIII + pie-DUSP It	pis_au	1*10	111111	ATF induced pre-	inucieus	Filleu

					mRNA synthesis		
88	pre-DUSP1t $\rightarrow Ø$	prd_du	0	min ⁻¹	pre-mRNA degradation	Nucleus	Assumed
89	pre-DUSP1t + Spliceosome → pre- DUSP1t:Spliceosome	a_n_spdu	10	min⁻¹	Spliceosome association	Nucleus	Fitted
90	pre-DUSP1t: Spliceosome \rightarrow DUSP1t + Spliceosome	rs_du	10	min⁻¹	Mature mRNA release	Nucleus	Fitted
91	$DUSP1t \rightarrow Ø$	rd_du	1×10 ⁻²	min⁻¹	mRNA degradation	Cytoplasm	Fitted
92	$DUSP1t \rightarrow DUSP1$	ps_c_du	2×10 ⁻²	min⁻¹	Protein synthesis	Cytoplasm	Fitted
93	$DUSP1 \rightarrow \emptyset$	pd_c_du	3×10 ⁻³	min⁻¹	Protein degradation	Cytoplasm	Fitted
		REPressor m	RNA and Protein	Synthesis			
94	pSTAT3n \rightarrow pSTAT3n + pre-REPt	prs_re	5×10 ⁻⁴	min ⁻¹	ATF induced pre- mRNA synthesis	Nucleus	Fitted
95	$pre-REPt \to \emptyset$	prd_re	0	min⁻¹	pre-mRNA degradation	Nucleus	Assumed
96	$pre-REPt + Spliceosome \to pre-REPt : Spliceosome^{\bullet}$	a_n_spre	10	min⁻¹	Spliceosome association	Nucleus	Fitted
97	pre-REPt: Spliceosome \rightarrow REPt + Spliceosome	rs_re	10	min⁻¹	Mature mRNA release	Nucleus	Fitted
98	$REPt \to \emptyset$	rd_re	1×10 ⁻²	min⁻¹	mRNA degradation	Cytoplasm	Fitted
99	$REPt \rightarrow REP$	ps_c_re	1×10⁻³	min⁻¹	Protein synthesis	Cytoplasm	Fitted
100	$REP \to \emptyset$	pd_c_re	1×10 ⁻³	min⁻¹	Protein degradation	Cytoplasm	Fitted
		IKK activation	and inactivation	n reactions			
101	IKKne + TAK1a \rightarrow TAK1a + IKKa	ka	1	µM ⁻¹ min ⁻¹	Kinase activation	Cytoplasm	Fitted
102	IKKa + A20 → A20 + IKKi	a20ina	10	µM⁻' min⁻'	Kinase inactivation	Cytoplasm	Fitted
103	IKKa → IKKi	ki	1×10 ⁻³	min ⁻ '	Kinase inactivation	Cytoplasm	Modified from (5)
104	IKKi → IKKne	kp	2×10 ²	min	Kinase inactivation	Cytoplasm	(5)
405		TAK1 activatio	n and inactivatio	on reactions	A	O to allo and	L La sal
105	$INF:INFR + IAK1ne \rightarrow INF:INFR + IAK1a$	tak1_nat	0		Activation	Cytoplasm	Used
106	$IRAF6 + IAK1ne \rightarrow IRAF6 + IAK1a$	tak1_nat6	2		Activation	Cytoplasm	Fitted
107	$IAK1a \rightarrow IAK1I$		0.2 5×10 ⁻³	min min ⁻¹	Kinase inactivation	Cytoplasm	(1) Fitted
108	TAK II → TAK Ine		5×10		Kinase inactivation	Cytopiasm	Fitted
100		LPS/ILR41	eceptor ligand d		Association	Mombrana	(6)
109	$LF3 + TLR4 \rightarrow LF3.TLR4$	<u></u> u	5x10 ⁻²	min ⁻¹	Dissociation	Mombrano	(0)
110	$LF3.1LR4 \rightarrow LF3 + 1LR4$ $LPS.TLP4 \rightarrow LF5 + 1LR4$	u_u	2×10^{-3}	min ⁻¹	Import	Membrane	(0) Fitted
112	$LF3.TER4 \rightarrow LF3.TER4IIIt$	<u> </u>	2×10 1×10 ⁻⁶	min ⁻¹	Export		Fitted
112		u	2×10 ⁻²	min ⁻¹	Inactivation	Cytoplasm	Fitted
115			ecentor ligand o	lynamics	Indelivation	Cytopiasin	Tilled
114	TNER + TNE ⁻ TNER + TNERi = tnfrtot	tnfrtot	0 1	uM	Concentration	Membrane	Assumed
115	$TNF:TNFR \rightarrow TNF + TNFR$	rl u tt	2×10 ⁻²	min ⁻¹	Dissociation	Membrane	(1)
116	TNF + TNFR → TNF:TNFR	rl b tt	1100	uM ⁻¹ min ⁻¹	Association	Membrane	(1)
117	LPS:TLR4 \rightarrow LPS:TLR4int	rldtt	1.2×10 ⁻²	 min ⁻¹	Degradation	Cvtoplasm	(7)
118	TNF:TNFRi → TNFR	rl r tt	1×10 ⁻²	min⁻¹	Export	Undefined	(2)
119	$TNF:TNFR \rightarrow TNF:TNFRi$	rl_i tt	4.6×10 ⁻²	min⁻¹	Import	Undefined	(7)
120	$TNF:TNFR\toTNF:TNFRi$	rl_i_lt	1.45	min⁻¹	Import (LPS induced)	Undefined	Fitted to data in (8)
	IFN-β/IFNAR receptor ligand dynamics						

121	IFNAR + IFN:IFNAR = ifnrtot	ifnrtot	0.1	uМ	Concentration	Membrane	Assumed
122	IFN + IFNAR → IFN:IFNAR	rl b ifif	60	uM ⁻¹ min ⁻¹	Association	Membrane	(9)
123	IFN:IFNAR → IFN + IFNAR	rl u ifif	0.6	min ⁻¹	Dissociation	Membrane	(9)
		IL-10/IL10R	receptor ligand	dvnamics			
124	IL-10R + IL10:IL10R = il10rtot	il10rtot	0.1	μM	Concentration	Membrane	Assumed
125	IL-10 + IL10R → IL10:IL10R	rl b ilil	60	µM ⁻¹ min ⁻¹	Association	Membrane	(2)
126	IL-10:IL10R → IL10 + IL10R	rl u ilil	6×10⁻³	, 	Dissociation	Membrane	(2)
		М	yD88 reactions	•	•		
127	MyD88 + MyD88i = myd88tot	myd88tot	0.1	μM	Concentration	Cytoplasm	Assumed
128	LPS:TLR4 + MyD88i → LPS:TLR4 + MyD88	pa_c_my	1	µM ⁻¹ min ⁻¹	Activation	Cytoplasm	Fitted
129	MyD88 → MyD88i	pd_c_my	0.12	min ⁻¹	Inactivation	Cytoplasm	Fitted
		1	RIF reactions				
130	TRIF + TRIFi = triftot	triftot	0.1	μM	Concentration	Cytoplasm	Assumed
131	LPS:TLR4int + TRIFi \rightarrow LPS:TLR4int + TRIF	pa_c_tr	2	µM⁻¹ min⁻¹	Activation	Cytoplasm	Fitted
132	$TRIF \to TRIFi$	pd_c_tr	0.185	min ⁻¹	Inactivation	Cytoplasm	Fitted
		TI	RAF6 reactions				
133	TRAF6 + TRAF6i = traf6tot	traf6tot	0.1	μM	Concentration	Cytoplasm	Assumed
134	MyD88 + TRAF6i \rightarrow MyD88 + TRAF6	a_c_am	1	µM⁻¹ min⁻¹	Activation	Cytoplasm	Fitted
135	TRIF + TRAF6i \rightarrow TRIF + TRAF6	a_c_at	0.5	µM⁻¹ min⁻¹	Activation	Cytoplasm	Fitted
136	$TRAF6 \rightarrow TRAF6i$	d_c_a	1.15	min⁻¹	Inactivation	Cytoplasm	Fitted
		7	BK1 reactions				
137	TBK1 + TBK1i = tbktot [™]	tbktot	0.1	μM	Concentration	Cytoplasm	Assumed
138	TRIF + TBK1i → TBK1	a_c_tt	10	µM⁻¹ min⁻¹	Activation	Cytoplasm	Fitted
139	TBK1 → TBK1i	d_c_tt	5×10⁻²	min ⁻¹	Inactivation	Cytoplasm	Fitted
		/	IKK reactions				
140	MKK + MKKi = mkktot	mkktot	0.1	μM	Concentration	Cytoplasm	Assumed
141	TAK1a + MKKi \rightarrow TAK1a + MKK	a_c_tt	5	µM ⁻¹ min ⁻¹	Activation	Cytoplasm	Fitted
142	$MKK \rightarrow MKKi$	d_c_tt	3×10⁻²	min⁻'	Inactivation	Cytoplasm	Fitted
			P38 reactions		1		
143	P38 + P38i = p38tot	p38tot	0.1	μM	Concentration	Cytoplasm	Assumed
144	MSK1 + P38i → MSK1 + P38	a_c_mp	10	µM⁻' min⁻'	Activation	Cytoplasm	Fitted
145	P38 → P38i	d_c_mp	8.5×10⁻²	min⁻'	Inactivation	Cytoplasm	Fitted
146	DUSP1 + P38 → DUSP1 + P38i	d_c_dp	50	µM⁻¹ min⁻¹	Inactivation (Dusp1 induced)	Cytoplasm	Fitted
		. <u>I</u>	RK reactions	1			
147	ERK + ERKi = erktot	erktot	0.1	μM	Concentration	Cytoplasm	Assumed
148	MKK + ERKi \rightarrow MKK + ERK	a_c_me	1.3	µM⁻' min⁻'	Activation	Cytoplasm	Fitted
149	ERK → ERKi	d_c_me	7×10 ⁻²	min⁻'	Inactivation	Cytoplasm	Fitted
		N	SK1 reactions		1		
150	MSK1 + MSK1i = msk1tot	msk1tot	0.1	μM	Concentration	Cytoplasm	Assumed
151	P38 + MSK1i → P38 + MSK1	a_c_pm	95	µM⁻' min⁻'	Activation	Cytoplasm	Fitted
152	MSK1 → MSK1i	d_c_pm	10	min ⁻ '	Inactivation	Cytoplasm	Fitted
455		N	ISK2 reactions				· ·
153	MSK2 + MSK2i = msk2tot	msk2tot	0.1	μM	Concentration	Cytoplasm	Assumed
154	$ERK + MSK2I \rightarrow ERK + MSK2$	a_c_pm	40	μM ⁻ ' min ⁻ '	Activation	Cytoplasm	Fitted
155	$MSK2 \rightarrow MSK2i$	d_c_pm	0.84	min ⁻ '	Inactivation	Cytoplasm	Fitted
	1 A 1 2 4 1 4 1 2 4 1 4 1 4 1 4 1 4 1 4 1 4	J	AK1 reactions				
156	JAK1 + JAK1i = jak1tot	jak1tot	1E-1	μM	Concentration	Cytoplasm	Assumed

157	IFN:IFNAR + JAK1i → JAK1	a_c_ij	100	µM ⁻¹ min ⁻¹	Activation	Cytoplasm	Fitted	
158	JAK1 → JAK1i	d_c_ij	0.1	min ⁻¹	Inactivation	Cytoplasm	Fitted	
			PI3K reactions		•			
159	PI3K + PI3Ki = pi3ktot	pi3ktot	0.1	μM	Concentration	Cytoplasm	Assumed	
160	JAK1 + PI3Ki \rightarrow JAK1 + PI3K	a_c_jp	20	µM⁻¹ min⁻¹	Activation	Cytoplasm	Fitted	
161	PI3K → PI3Ki	d_c_jp	2	min ⁻¹	Inactivation	Cytoplasm	Fitted	
	GSK3 reactions							
162	GSK3 + GSK3i = gsk3ktot	gsk3tot	0.1	μM	Concentration	Cytoplasm	Assumed	
163	PI3K + GSK3 → PI3K + GSK3i	a_c_pg	1	µM⁻¹ min⁻¹	Inactivation	Cytoplasm	Fitted	
164	GSK3i → GSK3	d_c_pg	1	min⁻¹	Activation	Cytoplasm	Fitted	
		J	AK1il reactions					
165	JAK1il + JAK1ili = jak3tot ^{**}	jak3tot	0.1	μM	Concentration	Cytoplasm	Assumed	
166	IL10:IL10R + JAK1ili → JAK1il	a_c_ilj	20	µM⁻¹ min⁻¹	Activation	Cytoplasm	Fitted	
167	JAK1il → JAK1ili	d_c_ilj	1	min⁻¹	Inactivation	Cytoplasm	Fitted	
		I	RF3 reactions	-		-		
168	IRF3i + pIRF3 + pIRF3n = irf3tot	irf3tot	0.1	μM	Concentration	Cytoplasm	Assumed	
169	TBK1 + IRF3i \rightarrow TBK1 + pIRF3	a_c_ti	2	µM ⁻¹ min ⁻¹	Activation	Cytoplasm	Fitted	
170	pIRF3 → IRF3i	d_c_i	0.1	min ⁻¹	Inactivation	Cytoplasm	Fitted	
171	$pIRF3 \rightarrow pIRF3n$	in_i	1	min⁻¹	Import	Undefined	Fitted	
172	$pIRF3n \rightarrow pIRF3$	ex_i	0.1	min ⁻¹	Export	Undefined	Fitted	
		C	REB reactions	-		-		
173	CREBi + pCREB + pCREBn = crebtot	crebtot	0.1	μM	Concentration	Cytoplasm	Assumed	
174	$MSK1 + CREBi \rightarrow MSK1 + pCREB$	a_c_m1c	1	µM ⁻¹ min ⁻¹	Activation	Cytoplasm	Fitted	
175	$MSK2 + CREBi \rightarrow MSK2 + pCREB$	a_c_m2c	0	µM ⁻¹ min ⁻¹	Activation	Cytoplasm	Assumed	
176	$GSK3 + pCREB \rightarrow GSK3 + CREBi$	d_c_gc	3	µM ⁻¹ min ⁻¹	Inactivation	Cytoplasm	Fitted	
177	$pCREB \rightarrow pCREBn$	in_c	1	min ⁻¹	Import	Undefined	Fitted	
178	$pCREBn \rightarrow pCREB$	ex_c	0.2	min ⁻¹	Export	Undefined	Fitted	
179	$pCREB \rightarrow CREBi$	d_c_c	2×10 ⁻²	min⁻′	Inactivation	Cytoplasm	Assumed	
		S	TAT3 reactions					
180	STAT3i + pSTAT3 + pSTAT3n = stat3tot	stat3tot	0.1	μM	Concentration	Cytoplasm	Assumed	
181	JAK1il + STAT3i → JAK3 + pSTAT3	a_c_js	20	µM ⁻ ' min ⁻ '	Activation	Cytoplasm	Fitted	
182	pSTAT3 → STAT3i	d_c_js	2	min⁻′	Inactivation	Cytoplasm	Fitted	
183	pSTAT3 → pSTAT3n	in_s	1	min	Import	Undefined	Fitted	
184	pSTAT3n → pSTAT3	ex_s	1	min⁻'	Export	Undefined	Fitted	
		/	ATF reactions					
185	ATF1i + pATF1 + pATF1n = atftot	atftot	0.1	μM	Concentration	Cytoplasm	Assumed	
186	$MSK1 + ATFi \rightarrow MSK1 + pATF$	a_c_m1a	82	µM ⁻ ' min ⁻ '	Activation	Cytoplasm	Fitted	
187	$MSK2 + ATFi \rightarrow MSK2 + pATF$	a_c_m2a	45	µM ⁻ ' min ⁻ '	Activation	Cytoplasm	Fitted	
188	$pATF1 \rightarrow ATF1i$	d_c_ab	1×10 ⁻²	min	Inactivation	Cytoplasm	Fitted	
189	$pATF1 \rightarrow pATF1n$	in_a	0.84	min	Import	Undefined	Fitted	
190	$pATF1n \rightarrow pATF1$	ex_a	0.79	min	Export	Undefined	Fitted	
		Miscel	laneous parame	ters				
191		LPS	0.5	nM	Concentration	Extracellular	Used	
					Conversion factor			
100		kon ··· · · · · · · · · · · · · · · · · ·	2×10-4	Dimonsionles	used to convert	Lindefined	Dorburd	
192		KITIUIVI	3×10	Dimensionless		Undefined	Derived	
					concentration to			
					exilacenular			

		assuming 100K/mL				
		cells with a 10 µm				
		radius				
	Functions					
NF-κB induced gene transcription of IκBα, IκBε, and	f(NFκBn) = mmVmax* NFκBn ^{mmHc} / (mmKm ^{mmHc} + NFκBn ^{mmHc})	f(NFκBn) = mmVmax* NFκBn ^{mmHc} / (mmKm ^{mmHc} + NFκBn ^{mmHc})				
REP induced inhibition of TNF transcription	g(REP) = a _{rep} – REP/k _{rep} if REP ≤ b _{rep} , 0 if REP > b _{rep}					
NF-kB induced gene transcription of TNF	h(NFκBn, REP) = f(NFκBn)×g(REP)					
MyD88 induced activation of TRAF6	f(MyD88) = mmVmax* MyD88 ^{mmHc} / (mmKm ^{mmHc} + MyD88 ^{mmHc})					
TRIF induced activation of TRAF6		f(TRIF) = mmVmax* TRIF ^{mmHc} / (mmKm ^{mmHc} + TRIF ^{mmHc})				
CREB induced gene transcription of IL-10	f(pCREBn) = mmVmax* pCREBn ^{mmHc} / (mmKm ^{mmHc} + pCREBn ^{mmHc})					
ATF induced gene transcription of DUSP1	f(pATFn) = mmVmax* pATFn ^{mmHc} / (mmKm ^{mmHc} + pATFn ^{mmHc})					
IRF3 induced gene transcription of IFN-β	f(pIRF3n) = mmVmax* pIRF3n ^{mmHc} / (mmKm ^{mmHc} + pIRF3n ^{mmHc})					
LPS induced internalization of TNFR		f(LPS) = mmVmax* LPS ^{mmHc} / (mmKm ^{mmHc} + LPS ^{mmHc})				

Table S1 Legend. The model species appearing in Table S1 are named as follows: X = species located in the cytoplasm; pX = phosphorylated form of the species located in the cytoplasm; Xn = species located in the nucleus; pXn = phosphorylated form of the species located in the nucleus; Xe = species located extracellularly; Xi = inactive form of the species; Xint = extracellular species internalized; Xt = spliced transcript of a species; pre-Xt = unspliced transcript of a species; Xa = active form of a species; Xne = neutral form of a species; X:Y = species X bound to species Y

*In these reactions the species that appears second never changes. **In these reactions the species on the right-hand-side of the equal sign denotes a conserved quantity.

Parameter #	Parameter name
1	in a
2	in e
3	ex a
4	ex e
5	in 2an
6	in 2en
7	ex 2an
8	ex 2en
9	in_n
10	ex_n
11	pd_n_a
12	pd_n_e
13	pd_n_2an
14	pd_n_2en
15	pd_c_2an
16	pd_c_2en
17	a_c_an
18	a_c_en
19	a_n_an
20	a_n_en
21	d_c_an
22	d_c_en
23	d_n_an
24	d_n_en
25	pd_c_2ai
26	pd_c_2ei
27	pd_c_3ain
28	pd_c_3ain
29	cnvr
30	mmVmax
31	mmKm
32	mmHc
33	a _{rep}
34	b _{rep}
35	k _{rep}
36	prs_an
37	prd_a
38	a_n_spa
39	prs_a

Table S2. Model parameter numbers and names as they appear in the MATLAB code and in Figs. S5-S8.

40	rs_a
41	rd_a
42	ps_c_a
43	pd_c_a
44	prs_en
45	prd_e
46	a n spe
47	prs_e
48	rs_e
49	rd_e
50	ps_c_e
51	pd_c_e
52	prs_a20n
53	prd_a20
54	a_n_spa20
55	prs_a20
56	rs_a20
57	rd_a20
58	ps_c_a20
59	pd_c_a20
60	prs_t
61	prd_t
62	a_n_spt
63	rs_t
64	rd_t
65	ps_c_t
66	pd_c_t
67	ex_tnf
68	pd_e_t
69	prs_i
70	prd_ifn
71	a_n_spifn
72	rs_ifn
73	rd_ifn
74	ps_c_ifn
75	pd_c_ifn
76	exifn
77	pd_e_ifn
78	prs_il
79	prd_il
80	a_n_spil
81	rs_il
82	rd_il
83	ps_c_il
84	pd_c_il

85	ex_il
86	pd_e_il
87	prs_du
88	prd_du
89	a n spdu
90	rs du
91	rd du
92	ps c du
93	pd c du
94	prs re
95	prd re
96	a n spre
97	rs re
98	rd re
99	ps_c_re
100	pd_c_re
101	ka
102	a20ina
103	ki
104	kp
105	tak1 nat
106	tak1 nat6
107	tak1_ai
108	tak1_in
109	rl_b_tl
110	rl_u_tl
111	rl_i_tl
112	rl_r_tl
113	rl_d_tl
114	tnfrtot
115	rl_u_tt
116	rl_b_tt
117	rl_d_tt
118	rl_r_tt
119	rl_i_tt
120	rl_i_lt
121	ifnrtot
122	rl_b_ifif
123	rl_u_ifif
124	il10rtot
125	rl_b_ilil
126	rl_u_ilil
127	myd88tot
128	pa_c_my
129	pd_c_my

130	triftot
131	pa_c_tr
132	pd_c_tr
133	traf6tot
134	a_c_am
135	a c at
136	d c a
137	tbktot
138	a c tt
139	d c tt
140	mkktot
141	a c tt
142	d_c_tt
143	p38tot
144	a c mp
145	d c mp
146	d_c_dp
147	erktot
148	a_c_me
149	d_c_me
150	msk1tot
151	a_c_pm
152	d_c_pm
153	msk2tot
154	a_c_pm
155	d_c_pm
156	jak1tot
157	a_c_ij
158	d_c_ij
159	pi3ktot
160	a_c_jp
161	d_c_jp
162	gsk3tot
163	a_c_pg
164	d_c_pg
165	jak3tot
166	a_c_ilj
167	d_c_ilj
168	irf3tot
169	ti
170	d_c_i
171	in_i
172	ex_i
173	crebtot
174	a_c_mlc

175	a_c_m2c
176	d_c_gc
177	in_c
178	ex_c
179	d_c_c
180	stat3tot
181	a_c_js
182	d_c_js
183	in_s
184	ex_s
185	atftot
186	a_c_mla
187	a_c_m2a
188	d_c_ab
189	in_a
190	ex_a
191	LPS
192	kuM

Table S3. Model species numbers and names as they appear in the MATLAB code and in Figs. S5-S8.

Species #	Species name
1	ΙκΒα
2	IκBαn (nuclear)
3	ΙκΒα:ΝΓ-κΒ
4	IκBα:NF-κBn (nuclear)
5	ΙκΒαt (mRNA)
6	ΙκΒε
7	IκBεn (nuclear)
8	ΙκΒε:ΝF-κΒ
9	IκBε:NF-κBn (nuclear)
10	IκBεt (mRNA)
11	A20
12	A20t (mRNA)
13	NF-ĸB
14	NF-κBn (nuclear)
15	IKKa (active)
16	IKKne (neutral)
17	IKKi (inactive)
18	TAK1a (active)
19	TAK1ne (neutral)
20	TAK1i (inactive)
21	prna_a (IκBα unspliced mRNA)
22	srna_a (IκBα spliceosome bound mRNA)
23	prna_e (ΙκΒε unspliced mRNA)
24	srna_e (ΙκΒε spliceosome bound mRNA)
25	prna_a20 (A20 unspliced mRNA)
26	srna_20 (A20 spliceosome bound mRNA)
27	prna_t (TNF unspliced mRNA)
28	<pre>srna_t (TNF spliceosome bound mRNA)</pre>
29	TNFt (mRNA)
30	TNFi (cytosolic)
31	TNFe (extracellular)
32	prna_i (IFN-β unspliced mRNA)
33	srna_i (IFN-β spliceosome bound mRNA)
34	IFN-βt (mRNA)
35	IFN-βi (cytosolic)
36	IFN-βe (extracellular)
37	prna_il (IL10 unspliced mRNA)
38	srna_il (IL10 spliceosome bound mRNA)
39	IL10t (mRNA)
40	IL10i (cytosolic)

41	IL10e (extracellular)
42	prna_du (DUSP unspliced mRNA)
43	srna_du (DUSP spliceosome bound mRNA)
44	DUSPt (mRNA)
45	DUSP (cytosolic)
46	prna_re (REP unspliced mRNA)
47	srna_re (REP spliceosome bound mRNA)
48	REPt (mRNA)
49	REP (cytosolic)
50	TLR4
51	LPS:TLR4
52	LPS:TLR4i (internalized)
53	LPS:TLR4d (decayed and recycled)
54	TNFR
55	TNF:TNFR
56	IFNR
57	IL10R
58	MyD88
59	TRIF
60	TRAF6
61	TBK1
62	МКК
63	P38a
64	ERKa (active)
65	MSK1
66	MSK2
67	JAK1 (IFN-β bound)
68	PI3K
69	GSK3
70	JAK1il (IL10 bound)
71	pIRF3 (phosphorylated)
72	pIRF3n (nuclear)
73	pCREB (phosphorylated)
74	pCREBn (nuclear)
75	pSTAT3 (phosphorylated)
76	pSTAT3n (nuclear)
77	pATF (phosphorylated)
78	pATFn (nuclear)

2. Supplementary Figures

Figure S1. Experimental data used for calibration, and model simulations, of premature and mature mRNA kinetics. Upper panels: unspliced pre-mRNA (red) and spliced mRNA (blue) transcripts for I κ B α , I κ B ϵ , and TNF measured from bone marrow-derived macrophages challenged with TNF (10 ng/ml) for 1 h (10). Lower panels: simulated trajectories of pre-mRNA (red) and mRNA (blue) of I κ B α , I κ B ϵ , and TNF after an LPS challenge. The horizontal axes between the upper and lower panel figures differ because the experimental data were obtained after a TNF challenge, whereas simulated data were generated for an LPS challenge. The response to TNF occurs with faster kinetics compared to a response to LPS. Therefore, we expected the simulated species to display slower kinetics under LPS stimulation. In our calibration, we chose to maintain the *relative* timing between the unspliced and spliced transcripts rather than the *absolute* timing.

Figure S2. Histograms of sensitivities. We perturbed the value of each parameter in the model by $\pm 1\%$ and evaluated the sensitivity of the trajectory of every model species according to Eq. 5 in the Materials and Methods Section of the main text. Thus, for each feature, we obtained 192 (parameters) \times 78 (model variables) = 14,976 sensitivity values, which are plotted in the histograms. The horizontal axis of each subpanel shows sensitivity intervals (indicated by the horizontal axis limits in each subplot) that were divided into 30 evenly spaced bins, while the vertical axis shows the number of sensitivities that fall into each bin. AUC refers to the area under the curve of a biochemical species trajectory. (Note that, for all subplots, the *x*-axis scale is linear, while the *y*-axis scale is logarithmic.)

Figure S3. Histograms of sensitivities. We perturbed the value of each parameter in the model by $\pm 50\%$ and evaluated the sensitivity of the trajectory of every model species (see the Materials and Methods Section in the main text). Thus, for each feature, we obtained 192 (parameters) \times 78 (model variables) = 14,976 sensitivity values, which are plotted in the histograms. For each subplot, the horizontal axis reflects sensitivity intervals (-50, 50) that were divided into 30 evenly spaced bins, while the vertical axis shows the number of sensitivities that fall into each bin. AUC refers to the area under the curve of a biochemical species trajectory. (Note that, for all subplots, the *x*-axis scale is linear, while the *y*-axis scale is logarithmic.)

Figure S4. Species trajectories resulting from model simulations using the default parameter set (red trace) or after perturbing the value of each parameter in the model by +50% or -50% (black lines; thus, for each model parameter and each species, we have two black lines: one for the increased parameter and one for the decreased parameter).

Figure S5. Global sensitivity analysis at 1 h. The *x*-axis shows parameter ordinal numbers (Table S2), whereas the *y*-axis shows model species (Table S3). We ran 50,000 simulations. For each simulation, we generated a random set of parameters using the Latin hypercube sampling scheme, where the value of each parameter in the model was drawn from a uniform distribution with 50% (200%) of the default parameter value as lower (upper) limit. We evaluated the Partial Rank Correlation Coefficient (PRCC) for each variable with respect to each parameter (11). Here, the PRCCs whose value is >0.5 are shown in yellow. The three columns centered on parameter #30 (P30) refer to the parameters controlling gene transcription rates.

Figure S6. Global sensitivity analysis at 12 h. PRCCs with value >0.5 are shown in yellow.

Figure S7. Global sensitivity analysis at 24 h. PRCCs with value >0.5 are shown in yellow.

Figure S8. Global sensitivity analysis at 48 h. PRCCs with value >0.5 are shown in yellow.

Figure S9. Regulation of the TNF trajectory. We calculated fold expression by dividing the values of the transcription rate parameters for I κ B α and IL-10 by their default values. Modulation of I κ B α and IL-10 expression does not change the timing of the TNF peak. There is only about 1 h difference in TNF peak time for any combination of the I κ B α and IL-10 expression.

3. MATLAB Code Description

Correspondence about modeling- and software-related technical questions to Maurizio Tomaiuolo: mauriziotml@gmail.com

The MATLAB code for the macrophage extra- and intracellular signaling pathway model was developed at the DoD Biotechnology High Performance Computing Software Applications Institute (BHSAI), Fort Detrick, Maryland, to study the long-term interaction between intracellular pathways leading to the production of pro- and anti-inflammatory mediators (TNF, IFN- β , and IL-10). The model simulates the kinetics of the extra- and intracellular species using a set of ordinary differential equations (ODEs). Local sensitivity analysis was implemented to verify the model robustness to local perturbations; this was supplemented with a global sensitivity analysis. The "System requirements" subsection (below) contains the details about the computer system that we used to develop and run the code. The rest of this document provides information about using the code to reproduce the figures in the paper.

System requirements

We used the following software and hardware components:

Software

- Operating System: Windows 7 Enterprise (64-bit operating system)
- MATLAB version 8.3.0.532 (R2014a) (64-bit operating system)

Hardware

- Intel® Core™ i7-3770 CPU @ 3.40 GHz and 8.00 GB RAM
- Disk space: 3-4 GB is recommended for a typical installation

We developed the code in MATLAB R2014a. It includes the following files:

params.txt - file containing the values of all parameters
mmfn.m - returns the value of the activator function
mmrfn.m - returns the value of the repressor function
my_ode_timeout_event.m - stops computation if the ODE solver is taking too long
getPeakTimeAreaSteady.m - computes peak magnitude, peak time, area under the curve, and
the steady-state value from a species kinetic trajectory
rescaleTo.m - normalizes a trajectory between two supplied values (min and max)

tnf_il10_model.m – function containing model equations

figure_2.m – function that runs the model to produce Fig. 2

figure 3.m – function that runs the model to produce Fig. 3

figure_4.m – function that runs the model to produce Fig. 4

figure_5.m – function that runs the model to produce Fig. 5

figure_6.m – function that runs the model to produce Fig. 6 (takes a long time to run)

plot_fig_6.m – function that plots Fig. 6 using the output produced by figure_6.m

figure_7.m – function that runs the model to produce Fig. 7

figure_s1.m - function that runs the model to produce Fig. S1 runSA.m - function that runs the local sensitivity analysis (1% case) figure_s2.m - function that plots Fig. S2 using the output produced by runSA.m runSA2X.m - function that runs the local sensitivity analysis (50% case) figure_s3.m - function that plots Fig. S3 using the output produced by runSA2X.m figure_s4.m - function that plots Fig. S4 using the output produced by runSA2X.m figure_s5_s8.m - function that runs global sensitivity analysis and plots Figs. S5-S8 plot_fig_s9.m - function that plots Fig. S8 using the output produced by figure_6.m run_tnf_il10_model.m - master function that runs the scripts described above

Instructions for downloading and saving the MATLAB files

The files are currently available in the ".txt" format. In order to run them in MATLAB, the file extension needs to be changed to .m, except for the **params.txt** file.

Macrophage signaling pathway model

1. The **INPUT** to the model is the **initial concentration of LPS**. The default value of this parameter is 0.5 nM (corresponding to 10 ng/ml for a molecular weight of 20 kDa). This value is defined as parameter No. 191 in the "param_values.txt" file found in the folder with the code.

To increase or decrease the input concentration of LPS, increase or decrease the value of the parameter in this file or run the "params(191) = YOUR_VALUE" in the MATLAB command window, and then run the model.

- 2. To run the model, open **run_tnf_il10_model.m** and click the **"Run"** icon in hit the F5 key.
- 3. The simulation will run, and when it is complete, the paper figures will be displayed. Depending on the specific computer configuration, it may take a long time to generate all the figures. **figure_7.m** and **runSA.m** are computationally intensive. If you would like to avoid running the code for a specific figure, simply put a % in front of the function call and MATLAB will ignore that line of code (as shown in the **run_tnf_ill0_model.m** file).

Local sensitivity analysis

Simulation: To calculate the local sensitivity values in the vicinity of the default parameter set (the 1% perturbation case), open the file **run_tnf_il10_model.m** and run the **runSA.m** function first and the **figure_s2.m** after that.

Output: Displays Fig. S2 and returns four matrices containing the sensitivity values for all the features selected from the TNF kinetic trace. The matrices are stored in the workspace. The sensitivity values for the trajectory peak are stored in a matrix labeled **smax**. The sensitivity values for the area under the curve are stored in a matrix labeled **sarea**. The sensitivity values for the trajectory peak time are stored in a matrix labeled **stmax**. The sensitivity values for the trajectory peak time are stored in a matrix labeled **stmax**. The sensitivity values for the steady-state values of the trajectory are stored in a matrix labeled **stmax**.

Simulation: To calculate the local sensitivity values in the vicinity of the default parameter set (the 50% perturbation case), open the file **run_tnf_il10_model.m** and run the **runSA2x.m** function first and the **figure_s3.m** after that.

Output: Displays Fig. S3 and returns four matrices containing the sensitivity values for all the features selected from the TNF kinetic trace. The matrices are stored in the workspace. The sensitivity values for the trajectory peak are stored in the matrix labeled **smax2X**. The sensitivity values for the area under the curve are stored in the matrix labeled **sarea2X**. The sensitivity values for the trajectory peak time are stored in the matrix labeled **stmax2X**. The sensitivity values for the trajectory peak time are stored in the matrix labeled **stmax2X**. The sensitivity values for the steady-state values of the trajectory are stored in the matrix labeled **stmax2X**.

Global sensitivity analysis

Simulation: To run global sensitivity analysis, open the file **run_tnf_il10_model.m** and run the **figure_s5_s8**. Depending on the specifics of the computer used it may take days to run.

Output: Displays Figs. S5, S6, S7, and S8 of the ESI.

References

- S. L. Werner, J. D. Kearns, V. Zadorozhnaya, C. Lynch, E. O'Dea, M. P. Boldin, A. Ma, D. Baltimore and A. Hoffmann, *Genes Dev*, 2008, 22, 2093-2101.
- 2. M. Fallahi-Sichani, D. E. Kirschner and J. J. Linderman, *Front Physiol*, 2012, **3**, 170.
- 3. J. R. Pfeiffer, B. L. McAvoy, R. E. Fecteau, K. M. Deleault and S. A. Brooks, *Mol Cell Biol*, 2011, **31**, 277-286.
- 4. T. Raabe, M. Bukrinsky and R. A. Currie, *J Biol Chem*, 1998, **273**, 974-980.
- L. Ashall, C. A. Horton, D. E. Nelson, P. Paszek, C. V. Harper, K. Sillitoe, S. Ryan, D. G. Spiller, J. F. Unitt, D. S. Broomhead, D. B. Kell, D. A. Rand, V. See and M. R. White, *Science*, 2009, **324**, 242-246.
- 6. H. J. Shin, H. Lee, J. D. Park, H. C. Hyun, H. O. Sohn, D. W. Lee and Y. S. Kim, *Mol Cells*, 2007, **24**, 119-124.
- 7. S. Tay, J. J. Hughey, T. K. Lee, T. Lipniacki, S. R. Quake and M. W. Covert, *Nature*, 2010, **466**, 267-271.
- 8. A. H. Ding, E. Sanchez, S. Srimal and C. F. Nathan, *J Biol Chem*, 1989, **264**, 3924-3929.
- 9. E. Jaks, M. Gavutis, G. Uze, J. Martal and J. Piehler, *J Mol Biol*, 2007, **366**, 525-539.
- 10. S. Hao and D. Baltimore, *Proc Natl Acad Sci US A*, 2013, **110**, 11934-11939.
- 11. S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, *J Theor Biol*, 2008, 254, 178-196.