Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Molecular simulations studies on the binding selectivity of 2-anilino-4-(thiazol-5-yl)-

pyrimidines in complexes with CDK2 and CDK7

Tahir Ali Chohan, Hai-Yan Qian, You-Lu Pan, and Jian-Zhong Chen*

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058,

China

* Corresponding Author: email: chjz@zju.edu.cn (J.-Z. Chen)

Docking	ΔG_{exp}	CScore ^a	Crash	Polar	G score ^d	PMF	D score ^f	Chem	Amino acid
complex			score ^b	score ^c		score ^e		score ^g	interaction
CDK2-CP1	-13.66	7.20	-1.02	1.89	-249.57	-62.04	-150.91	-29.01	Leu83, Lys89, Asp86
CDK7-CP1	-8.27	4.49	-1.02	2.15	-136.05	-43.39	-108.54	-24.65	Met94
CDK7-CP2	-9.79	5.41	-1.10	1.68	-200.73	-24.64	-200.73	-34.87	Met94
CDK7-CP3	-11.85	5.55	-0.47	1.82	-110.04	-66.02	-193.54	-25.25	Met94

Table S1. Surflex score of docked ligand CP1 for CDK2 and CP1-3 for CDK7

^{*a*}**CScore** is a consensus scoring which uses multiple types of scoring functions to rank the affinity of ligands, ^{*b*}**Crash**score revealing the inappropriate penetration into the binding site, ^{*c*}**Polar** region of the ligand, ^{*d*}**G-score** showing hydrogen bonding, complex (ligand-protein), and internal (ligand-ligand) energies, ^{*e*}**PMF-score** indicating the Helmholtz free energies of interactions for protein-ligand atom pairs (Potential of Mean Force, PMF), ^{*f*}**D-score** for charge and van der Waals interactions between the protein and the ligand, ^{*g*}**Chem-score** points for hydrogen bonding, lipophilic contact, and rotational entropy, along with an intercept term.

Figure S1. Comparison of binding modes of docked ligand with their starting conformations. **(A)** Superimposition of the docked ligand CP1 (Purple) and experimental conformation of CDK2 (Cyan). **(B)** Superimposition of the docked ligand CP1 (Purple) and experimental conformation of CP3 in the active site of CDK2 (Cyan). **(C)** Alignment of docked compounds CP1 (Purple), CP2 (Green) and CP3 (Cyan) within the active site of CDK7. The main residues constituting the active site are identified with a three letter representation. **(D)** The average means RMSD using bars chat.

CDK1	MEDYTKIEK <mark>IGE</mark> GTYGV <mark>V</mark> YKGRHKTTGQVV <mark>A</mark> M <mark>K</mark> KIRLESEEEGVPSTA	48
CDK2	MENFQKVEK <mark>IGE</mark> GTYGV <mark>V</mark> YKARNKLTGEVV <mark>A</mark> L <mark>K</mark> KIRLDTETEGVPSTA	48
CDK3	FCFPGSSVAMDMFQKVEK <mark>IGE</mark> GTYGV <mark>V</mark> YKAKNRETGQLV <mark>A</mark> L <mark>K</mark> KIRLDLEMEGVPSTA	57
CDK4	MATSRYEPVAE <mark>IGV</mark> GAYGT <mark>V</mark> YKARDPHSGHFV <mark>A</mark> L <mark>K</mark> SVRVPNGGGGGGGLPIST	53
CDK7	-MALDVKSRAKRYEKLDF <mark>LGE</mark> GQFAT <mark>V</mark> YKARDKNTNQIV <mark>A</mark> I <mark>K</mark> KIKLGHRSEAKDGINRTA	59
	· : : :* * :***.:. :**:*.:: *: ::	
CDK1	IREISLLKELRHPNIVSLQDVLMQDSRLYLI <mark>FEFLSMD</mark> LK <mark>K</mark> YLDSIPPGQYM	100
CDK2	IREISLLKELNHPNIVKLLDVIHTENKLYLV <mark>FEFLHQD</mark> LK <mark>K</mark> FMDASA-LTGI	99
CDK3	IREISLLKELKHPNIVRLLDVVHNERKLYLV <mark>FEFLSQD</mark> LK <mark>K</mark> YMDSTP-GSEL	108
CDK4	VREVALLRRLEAFEHPNVVRLMDVCATSRTDREIKVTLV <mark>FEHVDQD</mark> LR <mark>T</mark> YLDKAP-PPGL	112
CDK7	LREIKLLQELSHPNIIGLLDAFGHKSNISLV <mark>FDFMETD</mark> LE <mark>V</mark> IIKDNSLVL	109
	:**: **:. : ***:: * *: *:*:.: **. :. :	
CDK1	DSSLVKSYLYQILQGIVFCHSRRVLHRDLKP <mark>QNLLI</mark> DDKGTIKL <mark>ADF</mark> GLARAFGIPIRVY	160
CDK2	PLPLIKSYLFQLLQGLAFCHSHRVLHRDLKP <mark>QNLLI</mark> NTEGAIKL <mark>ADF</mark> GLARAFGVPVRTY	159
CDK3	PLHLIKSYLFQLLQGVSFCHSHRVIHRDLKP <mark>QNLLI</mark> NELGAIKL <mark>ADF</mark> GLARAFGVPLRTY	168
CDK4	PAETIKDLMRQFLRGLDFLHANCIVHRDLKP <mark>ENILV</mark> TSGGTVKL <mark>ADF</mark> GLARIYSYQM-AL	171

CDK7 TPSHIKAYMLMTLQGLEYLHQHWILHRDLKPNNLLLDENGVLKLADFGLAKSFGSPNRAY 169 :* : *:*: : * . ::******:*: *.:*******: ...

	* *** ***:**: * * * *******************	
CDK7	${\tt TH} QVV{\tt TR} {\tt W} {\tt RAPELL} {\tt F} {\tt G} {\tt RM} {\tt G} {\tt V} {\tt G} {\tt V} {\tt M} {\tt W} {\tt A} {\tt V} {\tt G} {\tt C} {\tt L} {\tt A} {\tt E} {\tt L} {\tt L} {\tt R} {\tt V} {\tt F} {\tt L} {\tt P} {\tt G} {\tt S} {\tt D} {\tt L} {\tt D} {\tt Q} {\tt L} {\tt T} {\tt I} {\tt F} {\tt E} {\tt L} {\tt L} {\tt A} {\tt A} {\tt A} {\tt A} {\tt C} {\tt L} {\tt A} {\tt E} {\tt L} {\tt L} {\tt R} {\tt V} {\tt P} {\tt F} {\tt L} {\tt P} {\tt G} {\tt D} {\tt S} {\tt D} {\tt L} {\tt D} {\tt Q} {\tt L} {\tt T} {\tt F} {\tt E} {\tt L} {\tt A} {\tt A}$	229
CDK4	TPVVVTLWYRAPEVLLQS-TYATPVDMWSVGCIFAEMFRRKPLFCGNSEADQLGKIFDLI	230
CDK3	${\tt THEVVTLWYRAPEILLGSKFYTTAVDIWSIGCIFAEMVTRKALFPGDSEIDQLFRIFRML$	228
CDK2	THEVVTLWYRAPEILLGSKYYSTAVDIWSLGCIFAEMVTRRALFPGDSEIDQLFRIFRTL	219
CDK1	THEVVTLWYRSPEVLLGSARYSTPVDIWSIGTIFAELATKKPLFHGDSEIDQLFRIFRAL	220

CDK1	GTPNNEVWPEVESLQDYKNTFPKWKPGSLASHVKNLDENGLDLLSKMLIYDPAKRISGKM 2	280
CDK2	GTPDEVVWPGVTSMPDYKPSFPKWARQDFSKVVPPLDEDGRSLLSQMLHYDPNKRISAKA 2	279
CDK3	GTPSEDTWPGVTQLPDYKGSFPKWTRKGLEEIVPNLEPEGRDLLMQLLQYDPSQRITAKT 2	288
CDK4	GLPPEDDWPRDVSLPRGAFPPRGPRPVQSVVPEMEESGAQLLLEMLTFNPHKRISAFR 2	288
CDK7	GTPTEEQWPDMCSLPDYVT-FKSFPGIPLHHIFSAAGDDLLDLIQGLFLFNPCARITATQ 2	288
	* * : ** .: *	

CDK1	ALNHPYFNDLDNQIKKM	297
CDK2	ALAHPFFQDVTKPVPHLRL	298
CDK3	ALAHPYFSSPE-PSPAARQYVLQRFRH	314
CDK4	ALQHSYLHKDEGNPE	303
CDK7	ALKMKYFSNRPGPTPGCQLPRPNCPVETLKEQSNPALAIKRKRTEALEQGGLPKKLIF	347

Figure S2. The sequence alignments of CDK1, CDK2, CDK3, CDK4 and CDK7 generated by Clustal W. at http://www.ebi.ac.uk/Tools/msa/clustalw2/. In the sequences, an asterisk (*) indicates an identical or conserved residue; a colon (:) indicates conserved substitutions; a stop (.) indicates semi-conserved substitutions.

Rank	Total energy		Volume (Å)		Residues contributing to each cluster			
	(kcal·mol ⁻¹)				(identified by subsite)			
	CDK2	CDK7	CDK2	CDK7	CDK2	CDK7		
1	-1622.97	-955.83	123	75	I10, G11, G13, V18, K33,	E20, T96, D97, E99,		
					V64, F80, Q131, N132, A144,	V100, K139, P140, N141		
					D145			
2	-797.57	-841.43	66	57	E8, K9, I10, G11, K20, F82,	L18, K41, F91, D92, F93,		
					H84	M94, E95, T96, D97,		
						L144, A154, D155		
3	-125.81	-561.12	8	50	I10, E81, F82, L83, A31,	F93, E95, T96, E147		
					L134			

Table S2. Result of binding site comparison of CDK2 and CDK7, based on EasyMIFs usingCMET probes.

Table S3. Quantum chemical descriptors based upon DFT calculations used for MESP forcompounds CP1, CP2, and CP3.

Quantum descriptors		Gas phase		Solvent phase (Aqueous)		
	CP1	CP2	CP3	CP1	CP2	CP3
$E_{\rm LUMO}~({\rm eV})$	-0.080	-0.105	-0.065	-0.071	-0.117	-0.067
$E_{\rm HOMO}~({\rm eV})$	-0.222	-0.215	-0.190	-0.217	-0.215	-0.188
Total dipole moment μ (D)	11.52	4.41	5.19	15.75	5.85	6.85

Figure S3. Molecular orbital for the HOMO–LUMO plot of (A) CP1, (B) CP2, and (C) CP3 with B3LYP/6-31G (d,p)

Figure S4. (A) The distance of CDK2-Asp145 (OD1) and CDK7-Asp155 (OD1) from C27 atom of inhibitor CP1, plotted as a function of time in CDK2-CP1 and CDK7-CP1. **(B)** The distance of CDK2-Asp86 (OD1) and CDK7-Asp97 (OD1) from N₁₇ atom of inhibitor CP2, plotted as a function of time in CDK2-CP2 and CDK7-CP2. **(C)** The distance of CDK2-Asp86 (CB) and CDK7-Asp97 (CB) from N₆ atom of inhibitor CP3, plotted as a function of time in CDK2-CP3 and CDK7-CP3.

System	Donor ^a	Acceptor ^a	Occupancy(%) ^b	Distance(Å) ^c	Angle(°) ^d
CDK2-CP1	Leu83 N-H	CP1 N1	98.48	3.003 ± 0.12	24.90 ± 13.12
	CP1 N1-H9	Leu83 O	73.16	2.999 ± 0.17	27.15 ± 8.12
	Lys89 NZ-HZ3	CP1 O2	41.69	3.234 ± 0.45	33.05 ± 15.12
	Lys89 NZ-HZ2	CP1 O2	31.69	3.202 ± 0.60	33.53 ± 14.87
CDK7-CP1	CP1 N1-H9	MET94 O	99.97	2.952 ± 0.15	23.29 ± 10.12
	Met94 N-H	CP1 N1	99.28	3.064 ± 0.14	32.19 ± 14.55
	Lys44 NZ-HZ2	CP1 O3	36.00	2.87 ± 0.70	154.31 ± 14.73
CDK2- CP2	CP2 N7-H8	Leu83 O	99.81	3.001 ± 0.16	21.96 ± 11.08
	Leu83 N-H	CP2 N1	97.83	3.099 ± 0.15	29.01 ± 13.13
	CP2 N7A-H5	Asp145 OD1	46.28	3.011 ± 0.28	21.36 ± 11.00
	CP2 N7A-H4	Asp145 OD2	40.40	3.454 ± 0.59	32.67 ± 14.69
	Lys89 NZ-HZ2	CP2 O8B	12.80	3.498 ± 0.78	34.19 ± 14.49
CDK7-CP2	CP2 N7-H8	Met94 O	99.30	2.961 ± 0.15	19.31 ± 11.30
	Met94 N-H	CP2 N1	98.37	3.106 ± 0.15	28.58 ± 12.97
	CP2 N7A-H4	Asp155 OD2	30.59	3.241 ± 0.75	27.72 ± 15.58
	CP2 N7A-H4	Asp155 OD1	28.21	4.142 ± 0.72	37.56 ± 13.74
CDK2-CP3	CP3 N7-H6	Leu83 O	100	3.026 ± 0.16	27.77 ± 13.07
	Leu83 N-H	CP3 N1	99.80	3.054 ± 0.13	21.74 ± 10.26
CDK7-CP3	CP3 N7-H6	Leu83 O	99.94	3.038 ± 0.21	19.55 ± 10.12
	МЕТ94 N-Н	CP3 N1	99.51	3.023 ± 0.13	31.79 ± 13.87
Q85T- CP1	Leu83 N-H	CP1 N1	85.90	3.090 ± 0.16	21.70 ± 9.69
K89L- CP1	Leu83 N-H	CP1 N1	82.97	3.123 ± 0.16	21.65 ± 9.79
	CP1 N8-H	Glu228 O	100	2.63 ± 0.11	158.97 ± 9.88
	CP1 N16-H	Asp292 OD2	30.00	4.31 ± 0.43	144.23 ± 13.75
D145A- CP1	Leu83 N-H	CP1 N1	79.69	3.167 ± 0.19	21.65 ± 9.79

Table S4. Hydrogen bonds analyses from MD trajectories ^a

^{*a*} The listed donor and acceptor pairs satisfy the criteria for the hydrogen bond over 30.0% of the time during the 40 ns of simulation. ^{*b*} Occupancy is in unit of percentage of the investigated time period. ^{*c*} The average distance with standard error (SE = standard deviation/N_{1/2}) between hydrogen acceptor atom and proton on hydrogen donor atom in the investigated time period. ^{*d*} The average angle with standard error (SE = standard deviation/N_{1/2}) in parentheses for hydrogen bond in the investigated time period.