Supplementary files for

Understanding the functional impact of copy number alterations in breast cancers using a network modeling approach

Sriganesh Srihari^{1#}, Murugan Kalimutho^{2#}, Samir Lal³, Jitin Singla⁴, Dhaval Patel⁴, Peter T. Simpson^{3,5}, Kum Kum Khanna² and Mark A. Ragan^{1*}
¹Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
² QIMR-Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
³ The University of Queensland, UQ Centre for Clinical Research, Brisbane, QLD 4029, Australia
⁴ Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
⁵ The University of Queensland, School of Medicine, Brisbane, QLD 4006, Australia

Supplementary website: <u>http://bioinformatics.org.au/tools-data/</u> under NetStrat

Section 4.1 of main text (Materials and Methods)

Choosing ω cut-off

A pair of genes (proteins) could be co-expressed due to a number of reasons – for example, by being coregulated by the same transcription factor or due to co-functioning in a complex *via* direct interactions. To identify *trans*-associated genes we are only interested in gene pairs (*i.e.* interactions in the network) whose coexpression associates with the CNA of one or both genes. In Equation 2 (main manuscript), since we compute the weighted sum of CNAs, those gene pairs which do not exhibit any CNAs (zero or low CNAs) would be assigned zero or low weights and hence will not be accounted for.

In addition, we would also like to discount gene pairs from the network that show low co-expression values, by using an ω cut-off on the co-expression. This is because these lowly co-expressed interactions often include: (i) interactions that are false-positive or noisy, or (ii) genes whose CNAs do not correlate with the corresponding (co-)expression changes. Here, we choose an ω that is reasonably high, but at the same time allows for sufficient number of interactions. We expect that for most of the gene pairs (*A*, *B*) passing this ω cut-off, at least one of A or *B* exhibits a CNA that agrees with its expression profile (*i.e.* a gain/amplification results in higher expression whereas a loss/deletion results in reduced expression).

At co-expression $\omega = |0.40|$, accounting to 4150 interactions (see full distribution in **Figure 1**), about ~83% (=3443) of all gene pairs (*A*, *B*) show (i) CNAs in at least one of *A* or *B*; and (ii) these CNAs correlate with the expression of the genes with r = 0.69.

Figure S1: Distribution of co-expression between interacting gene pairs in the PPI network

	Cis	Trans	Cis+Trans
k ∖ #Genes	917	663	1527
2	0.21	0.13	0.21
3	0.28	0.19	0.28
4	0.38	0.26	0.39
5	0.40	0.31	0.41
6	0.44	0.37	0.46
7	0.49	0.39	0.51
8	0.53	0.43	0.56
9	0.55	0.44	0.59
10	0.58	0.46	0.63
11	0.57	0.39	0.59
12	0.52	0.31	0.53
13	0.48	0.22	0.49
14	0.43	0.14	0.46
15	0.41	0.07	0.43

Section 2.1 of main text (Application to Subtyping of breast tumours)

Table S2: Average Silhouette indices for clusters produced using *cis-*, *trans-* and *cis-* and *trans-*associated genes for $k \in [2, 15]$.

Figure S2: Kaplan-Meier plots of disease-specific survival (truncated at 15 years) for clusters identified using cis- (917), trans- (663) and by combining cis- and trans-associated (1527) genes (arranged horizontally) for k = 8, 9, 10 clusters (arranged vertically) from the Discovery dataset (998 tumours). Log-rank test p-value in each of the cases was significant (p < 0.0001). Figure 2 of the main manuscript is Figure 2*i* here.

Figure S3: Distribution of tumour grade and stage among the ten clusters

Section 2.2 of main text (In-depth analysis of cis- and trans-associated genes in the ten clusters)

Figure S4: Disease-specific survival proportions of patients stratified based on the expression levels of *ZNF703*. *ZNF703* is over-expressed in clusters 1 and 3, which correspond to luminal tumours that show poor prognosis at 10 years' follow up. Interestingly, very high expression of *ZNF703* (\geq 75 percentile) is seen in 94% (235 out of 250) of the tumours in these clusters.

Figure S5: Disease-specific survival proportions of patients stratified based on the expression levels of *SF3B3*. Sixty out of 150 (~40%) tumours showing very high expression (\geq 85 percentile) for *SF3B3* came from cluster 4, which is predominantly composed of basal-like tumours.

Figure S6: Enrichment of Gene Ontology Biological Process terms in the genes involved in cell division that accumulated high contribution values.

Figure S7: Trans-associated modules of mitotic and immune-response genes

Dataset	Gene	Description	Correlation score (CNA
			and expression)
COSMIC	AXINI	Axis Inhibition Protein 1	0.443
	CBFB	Core-Binding Factor, Beta Subunit	0.535
	CCNDI	Cyclin DI	0.487
	CDK4	Cyclin-Dependent Kinase 4	0.447
	CLPI	Factor I Subunit 1	0.519
	DDX10	DEAD (Asp-Glu-Ala-Asp) Box Polypeptide	0.496
	ERCC5	Excision Repair Cross- Complementation Group 5	0.624
	EZR	Ezrin	0.439
	FANCG	Fanconi Anaemia, Complementation Group G	0.461
	FH	Fumarate Hydratase	0.458
	GOLGA5	Golgin A5	0.495
	HERPUDI	Homocysteine-Inducible, Endoplasmic Reticulum Stress- Inducible, Ubiquitin-Like Domain Member 1	0.440
	НООКЗ	Hook Microtubule-Tethering Protein 3	0.4727
	IKBKB	Inhibitor Of Kappa Light Polypeptide Gene Enhancer In B- Cells, Kinase Beta	0.549
	KDM5A	Lysine (K)-Specific Demethylase 5A	0.576
	KDM6A	Lysine (K)-Specific Demethylase 6A	0.442
	KRAS	Kirsten Rat Sarcoma Viral Oncogene Homolog	0.528
	MAP2K4	Mitogen-Activated Protein Kinase Kinase 4	0.530
	MDM2	MDM2 Proto-Oncogene, E3 Ubiquitin Protein Ligase	0.497
	MLH1	MutL Homolog 1	0.456
	MLLT10	Myeloid/Lymphoid Or Mixed- Lineage Leukemia (Trithorax Homolog, Drosophila); Translocated	0.480
	NCOR1	Nuclear Receptor Corepressor 1	0.468
	PALB2	Partner And Localizer Of BRCA2	0.505
	PCM1	Pericentriolar Material 1	0.605
	PPP6C	Protein Phosphatase 6, Catalytic Subunit	0.505
	PRCC	Papillary Renal Cell Carcinoma	0.576
	RAC1	Ras-Related C3 Botulinum Toxin Substrate 1	0.489
	RAD21	RAD21 Homolog (S. Pombe)	0.485
	RAF1	Raf-1 Proto-Oncogene, Serine/Threonine Kinase	0.443
	RECQL4	RecQ Protein-Like 4	0.5249
Vogelstein's list of genes affected by amplification, deletion and rearrangement	CCND1	Cyclin D1	0.487

MAP2K4	Mitogen-Activated Protein Kinase	0.530
	Kinase 4	
MDM2	MDM2 Proto-Oncogene, E3	0.497
	Ubiquitin Protein Ligase	
 PRCC	Papillary Renal Cell Carcinoma	0.576
RAF1	Raf-1 Proto-Oncogene,	0.443
	Serine/Threonine Kinase	
SS18	Synovial Sarcoma Translocation,	0.479
	Chromosome 18	

Table S3: List of COSMIC and Vogelstein's genes (affected by amplification, deletion and rearrangements) found among our *cis*-associated genes.

Figure S8: Gains/amplifications observed for *CCND1*, *ERRB2*, *MDM2*, *MYC*, *SF3B3*, *SF3B4*, *SF3B5* and *ZNF703* in the ten clusters.

Figure S9: Losses/deletions observed for *CCND1*, *ERRB2*, *MDM2*, *MYC*, *SF3B3*, *SF3B4*, *SF3B5* and *ZNF703* in the ten clusters.

(S8 and S9 on the next page)

Integrative Clustering Subtypes Segregation – from CCND1 to ZNF703

Genes & Chi-square Test

