
Supplementary Information
DNase I hypersensitive sites (DHS) 

We downloaded the previously identified DHSs of 19 human cell lines from 

UCSC genome browser (http://genome.ucsc.edu/) 1, representing a wide variety of 

human tissues. The sequencing raw data were aligned to the human reference genome 

(built hg.19) using BWA and were then smoothed using a kernel density estimator, F-

seq 2. Then, DHS peaks were identified as having a -log10 (P-value) >= 1.3. All sites 

of DHS peaks can be downloaded from our website: 

http://donglab.ecnu.edu.cn/data/DHS/index.html

DHSs annotation

DHSs were classified according to the genomic regions of genes. If a DHS 

located in the transcription start site region (TSS) of any transcript isoforms of a gene, 

it was classified as a TSS DHS for the focal gene. Those DHSs were classified as 

gene body DHSs if they overlap with any regions of the exons or introns, and all other 

DHSs which do not overlap with any region of a gene were classified as intergenic 

DHSs. Then we establish the associations between DHSs and genes. TSS DHSs and 

gene body DHSs were associated with the genes they overlapped. For each intergenic 

DHS, we used BEDTOOLS software 3 to find the nearest gene, and associated it with 

that DHS if the distance between them was less than 200kb. 

miRNA targets prediction

The miRNA targets were taken from three previously published in silico miRNA 

target prediction methods, including TargetScan (http://www.targetscan.org version 

5.1) 4, PITA (http://genie.weizmann.ac.il/pubs/mir07/mir07data.html) 5 and Pictar 

(http://genome.ucsc.edu four-way) 6. Those miRNA targets predicted by TargetScan 

with a total context score < -0.3 were removed, and those with at least one conserved 

7-mer or 8-mer were chosen as reliable miRNA targets. For PITA targets, a score less 

than -10 was selected as the threshold to choose reliable miRNA targets. To minimize 
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the false positive of miRNA target prediction, a high-quality miRNA target data set 

was generated by intersecting data generated by at least two different in silico miRNA 

target prediction methods. Those without being detected by any methods were defined 

as miRNA non-targets. Furthermore, we also downloaded experimentally verified 

miRNA target data from miRTarBase database (http://mirtarbase.mbc.nctu.edu.tw). 

The data can be downloaded from our website http://donglab.ecnu.edu.cn/data/DHS/

Transcription factor binding site

We totally downloaded 229 ChIP-seq datasets from UCSC genome browser, 

representing the DNA footprints of 59, 120, 86 and 64 TFs in four human cell lines 

(H1, K562, GM12878 and HepG2), respectively. A total of 282982, 689191, 593813 

and 589960 ChIP-seq peaks were found in H1, K562, GM12878 and HepG2 cell lines, 

respectively. The ChIP-seq peaks was defined as TFBS in our work. All data can be 

downloaded from our website http://donglab.ecnu.edu.cn/data/DHS/

PWM Scan

We downloaded 789 PWMs from the JASPAR, TRANSFAC and Uniprobe 

databases, which represents vertebrate TFs. “PWM Score’’ is a log-likelihood ratio of 

the probability of a given sequence under the PWM model, compared to a random 

sequence model. Each TF is represented by a specific PWM (a matrix of frequencies) 

with which this TF is expected to bind certain DNA motif. Each PWM was used to 

score the intergenic, TSS and gene body DHS regions while looking for subsequences 

that closely match the binding motif represented by the PWM. Next, we scanned the 

sequence from each DHS and non-DHS regions. For each location, a score was 

calculated based on the probability that the sequence was generated in PWM model 

versus the probability that the specific sequence was generated in background model. 

The first-order Markov Model trained on a 500-bp window centered at the base pair 

was applied in the background model. This method could effectively correct for the 

underlying dinucleotide composition and separate signal from noise. The scores were 

generated for each base pair. A 60-bp sliding window was moved across the sequence, 



and we summed scores of all base pairs in each window. The maximum window score 

was determined as the TFBS score for that TF. This sliding window based method 

could account for local clustering of binding sites, which have been shown to be more 

likely to be bound by TFs than single binding sites. In general, one gene may be 

associated with more than one DHSs, and these regions were assumed to be the 

putative regulatory region for that gene. Here, we assigned the maximum TFBS score 

of that region to each gene.

Support vector machine (SVM)

LibSVM package 7 was employed to construct the SVM model and evaluated the 

performance of the models using five-fold cross-validation. The process of SVM 

could be summarized as the following steps:

1. Dataset preparation

A data set matrix should be construct under the following format,

[
𝑦1 𝑥1,1 𝑥1,2 𝑥1,3 … 𝑥1,𝑚
𝑦2 𝑥2,1 𝑥2,2 𝑥2,3 … 𝑥2,𝑚
𝑦3 𝑥3,1 𝑥3,2 𝑥3,3 … 𝑥3,𝑚
… … … … … …

𝑦𝑛 ‒ 1 𝑥𝑛 ‒ 1,1 𝑥𝑛 ‒ 1,2 𝑥𝑛 ‒ 1,3 … 𝑥𝑛 ‒ 1,𝑚
𝑦𝑛 𝑥𝑛,1 𝑥𝑛,2 𝑥𝑛,3 … 𝑥𝑛,𝑚

]
Where n represents the number of objects, m represents the number of variables, y 

represents the binary vector (represent two categories) and x represents the variables. 

For object i,  represents the class of object i and  represents the value of variable j 𝑦𝑖 𝑥𝑖,𝑗

in the object i. 

2. Model construction based on training set

The SVM model construction can be simplified as an optimization problem:

Minimize      
1
2

‖𝑤‖2 + 𝐶
𝑛

∑
𝑖 = 1

𝜉𝑖

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝑦𝑖(𝑤'𝑥𝑖 + 𝑏) ≥ 1 ‒ 𝜉𝑖

where w is the coefficients of the hyperplane, C is the penalty coefficient and  is 𝜉𝑖



the slack variable.

The dual of this optimization problem is:

maximize    𝑊(𝛼) =
𝑛

∑
𝑖 = 1

𝛼𝑖 ‒
1
2

𝑛

∑
𝑖 = 1,𝑗 = 1

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥,𝑥𝑗)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝐶 ≥ 𝛼𝑖 ≥ 0,
𝑛

∑
𝑖 = 1

𝛼𝑖𝑦𝑖 = 0

Where w is recovered as , S is the support vector sets. K(*,*) is 
𝑤 =

𝑆

∑
𝑗 = 1

𝛼𝑡𝑗
𝑦𝑡𝑗

𝑥𝑡𝑗
 

the kernel function, i.e. polynomial kernel, radial basis function kernel, sigmoid 

kernel, etc. 

3. Model evaluation using testing set.

For a test object z, the discriminate function essentially is a weighted sum of the 

similarity between z and a preselected set of objects (the support vectors),

,

𝑓(𝑧) = ∑
𝑥𝑖𝜖𝑆

𝛼𝑖𝑦𝑖𝐾(𝑧,𝑥𝑖) + 𝑏

where S represents the support vector sets.

Based on the miRNA-mRNA relationships, genes can be classified into miRNA 

targets and non-targets. TFBS scores were used for SVM classifiers to discriminate 

miRNA targets and non-targets. Data matrix could be shown under the following 

format 

[
𝑦1 𝑥1,1 𝑥1,2 𝑥1,3 … 𝑥1,𝑚
𝑦2 𝑥2,1 𝑥2,2 𝑥2,3 … 𝑥2,𝑚
𝑦3 𝑥3,1 𝑥3,2 𝑥3,3 … 𝑥3,𝑚
… … … … … …

𝑦𝑛 ‒ 1 𝑥𝑛 ‒ 1,1 𝑥𝑛 ‒ 1,2 𝑥𝑛 ‒ 1,3 … 𝑥𝑛 ‒ 1,𝑚
𝑦𝑛 𝑥𝑛,1 𝑥𝑛,2 𝑥𝑛,3 … 𝑥𝑛,𝑚

]
Where n is the gene number and m is the TF number,  represent the miRNA 𝑦𝑖

target status of gene i, and  represents the TFBS score of TF j bound to gene i.𝑥𝑖,𝑗
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