Supporting Information

Targeted delivery of siRNA using ternary complexes with branched cationic peptides and DOTMA/DOPE: the role of peptide sequence, peptide branching and lipids.

Laila Kudsiova, Katharina Welser, Frederick Campbell, Atefeh Mohammadi, Natalie

Dawson, Lili Cui, Helen C Hailes, M. Jayne Lawrence and Alethea B Tabor

		Pages
	Peptide purification and characterisation	2-3
Figure S1	Knockdown efficiencies of LPR (OptiMEM/medium) and (water/medium)	4
Figure S2	Knockdown efficiencies of PR (OptiMEM) and protein content	5
Figure S3	Protein content of cells treated with LPR	6-7
Figure S4	Hydrodynamic size of PR and LPR	8
Figure S5	Zeta potential of PR and LPR	9
Figure S6	TEM of PR complexes	10
Figure S7	CD spectra	11
Figure S8	SANS	12
Figure S9	Confocal microscopy	13
Figure S10	Knockdown efficiencies of LPR (OptiMEM) and protein content	14
Figure S11	Correlation between luminescence and protein content per well in A549-Luc cells.	15

The disulfide bond was formed by aerial oxidation.

Purification of crude peptide was performed using a DiscoveryBIO Wide Pore C18 (Varian; 100 x 21.2 mm, 5 μ m beads) flow rate of 10 mL/min, and UV detection at 215 and 254 nm. Linear gradient: 10-50% B over 25 min, A = H₂O, 0.1% TFA, B = CH₃CN, 0.1% TFA).

Analysis of the purified peptide was performed using an Onyx monolithic C18 column (Phenomenex; 100 x 3.0 mm), flow rate 0.85 mL/min, UV detection at 215nm. Linear gradient: 5-90% B over 30 min, A = H₂O, 0.1% TFA, B = CH₃CN, 0.1% TFA). R_T 11.523, m/z (ES+) 1162.17 ([M + 3H]³⁺), 871.80 ([M + 4H]⁴⁺), 697.60 ([M + 5H]⁵⁺), 581.45 ([M + 6H]⁶⁺).

FITC-labeling of branched peptides

To a stirred solution of peptide (1 mg/mL) in bicarbonate buffer (pH 8.99 @ 22.2°C) was added fluorescein isothiocyanate (FITC, 10 eq. per peptide). The reaction mixture was stirred at room temperature for 4 h. Excess free FITC was removed by repeated dilution with water and separation by size exclusion spin filtration (VivaSpin; MWCO 2000 Da). The supernatant was then freeze-dried.

Exact FTIC-labelling conditions for each peptide:

 $(H_3K)_4B1$ -L1-Y (Mw 6012) – 1 mL of a 1 mg/mL solution in bicarbonate buffer – 0.166 umol. 64.8 uL of FITC (@10 mg/mL) – 1.66 umol.

 $K_6B2L1-Y$ (Mw 6817) – 1 mL of a 1 mg/mL solution in bicarbonate buffer – 0.147 umol. 64.8 uL of FITC (@10 mg/mL) – 1.47 umol.

Figure S1: % Knockdown efficiency (calculated as a % of luminescence produced by each sample formulated with negative control siRNA, and normalised according to the protein content) of LPRs at 0.5:6:1 (grey bars) or 0.5:12:1 (black bars) charge ratios, prepared using (a, d) group 1, (b, e) group 2, and (c, f) group 3 peptides. LPRs were prepared either fully in OptiMEM (a, b, c); or in 12.5% water then diluted in serum-containing growth media (d, e, f). siRNA alone and L2K:siRNA at 5:1 weight ratio were used as negative and positive controls, respectively.

Figure S2 (a) % Knockdown efficiency (calculated as a % of luminescence produced by each sample formulated with negative control siRNA, and normalised according to the protein content) of selected PRs at 6:1 charge ratio, prepared fully in OptiMEM. siRNA alone and L2K:siRNA at 5:1 weight ratio were used as controls respectively. (b) % protein content of the PRs in figure (a) showing formulations prepared using LucsiRNA (+ve siRNA) and negative control siRNA (-ve siRNA) in grey and black, respectively.

Figure S3: % Protein content compared to untreated control cells of LPRs prepared using (a, d, g, j) group 1, (b, e, h, k) group 2, and (c, f, i, l) group 3 peptides. LPRs were prepared either in (a, b, c) water then diluted in OptiMEM; in (d, e, f) OptiMEM fully; (g, h, i) water then diluted in serum-containing growth media, and (j, k, l) OptiMEM then diluted in serum-containing growth media. The protein content of formulations prepared using Luc-siRNA (+ve siRNA) and negative control siRNA (-ve siRNA) are shown in grey and black, respectively.

Figure S4: Apparent hydrodynamic size (nm) of (a) PR and (b) LPR complexes prepared at 6:1 and 12:1 or 0.5:6:1 and 0.5:12:1 charge ratios respectively using group 1, 2 and 3 peptides. The siRNA concentration in each sample was 26 ug mL⁻¹.

Figure S5: Zeta potential (mV) of (a) PR and (b) LPR complexes prepared at 6:1 and 12:1 or 0.5:6:1 and 0.5:12:1 charge ratios respectively using group 1, 2 and 3 peptides. The siRNA concentration in each sample was 2.9 ug mL^{-1} .

Figure S6: Transmission electron microscopy of PR complexes prepared with the peptides (a) $K_6B1-L1-[Y]$, (b) $R_6B1-L1-[Y]$, (c) $H_6B1-L1-[Y]$, (d) $K_{12}B0-L1-[Y]$ and (e) $K_6B2-L1-[Y]$ at 6:1 PR charge ratio and a final Sigma siRNA concentration of 0.05 mg mL⁻¹.

Figure S7: CD spectra of (a) peptides $H_6B1-L1-[Y]$, $K_6B1-L1-[Y]$, $R_6B1-L1-[Y]$, $K_1_2B0-L1-[Y]$, $K_6B2-L1-[Y]$ and $(H_3K)_4B1-L1-[Y]$ at concentrations equivalent to those used in PR and LPR complexes; (b) DOTMA:DOPE:siRNA (LR) complexes at 0.5:1, 1:1, 2:1 and 4:1 charge ratios; (c) PR complexes at 6:1 charge ratio prepared using the above peptides compared to free siRNA; (d-f) LPR complexes at 0.5:6:1 charge ratio prepared using the above peptides compared to free siRNA. The siRNA concentration in all samples was 4 M. Measurements were performed in a 1 mm path length cuvette.

Figure S8. Small angle neutron scattering data (dots) at 298 K and the best fit to the data (solid line) obtained using the mixed sheet and stack model for LPRs prepared from a 1:1 molar ratio of DOTMA:DOPE and containing (a) $R_6B1-L1-[Y]$ (b) $K_{12}B0-L1-[Y]$, (c) $K_6B2-L1-[Y]$, (d) $K_6B1-L1-[Y]$, (e) $K_6B0-L1-[Y]$ at a 0.5:6:1 charge ratio.

Figure S9: Confocal microscopy of A549-luc cells transfected with LPR complexes prepared fully in OptiMEM containing peptides (a) $K_6B2-L1-[Y]$ and (b) $(H_3K)_4B1-L1-[Y]$ after 4 hours of incubation or (c) $K_6B2-L1-[Y]$ and (d) $(H_3K)_4B1-L1-[Y]$ after 24 hours of incubation. LPR complexes were prepared with BODIPY-HPC incorporated into DOTMA/DOPE lipid (green) and rhodamine labelled Silencer® Negative Control siRNA (red) at a lipid:peptide:siRNA charge ratio of 0.5:6:1. The cell nucleus was stained with DAPI (blue). All peptides were unlabelled.

Figure S10: Red and green channel confocal microscopy images from Figure 9

Figure S11: (a) % Knockdown efficiency (calculated as a % of luminescence produced by each sample formulated with negative control siRNA, and normalised according to the protein content) of L2K and K4B1L1-[Y] LPR at 0.5:12:1 prepared in OptiMEM using 10, 30, 50 and 100 nM siRNA per well. (b) % protein content of the formulations in figure (a) prepared using Luc-siRNA (+ve siRNA) and negative control siRNA (-ve siRNA) in grey and black, respectively.

Figure S12: Correlation between luminescence and protein content per well in A549-Luc cells.