Electronic Supplementary Information

### Table 1

| Chemical form           | Name of the compound      | PubChem  | MW (Da) |  |
|-------------------------|---------------------------|----------|---------|--|
|                         |                           | CID      |         |  |
| Amino acid derivative   | Mimosine                  | 440473   | 198.17  |  |
|                         | N-acetyl cysteine         | 12035    | 163.19  |  |
| Alkaloids               | Aristolochic acid         | 2236     | 341.27  |  |
|                         | Ajamaline                 | 2073     | 326.27  |  |
|                         | Reserpine                 | 5770     | 608.67  |  |
| Flavonoids/terpenoids   | Flavone                   | 10680    | 222.23  |  |
| _                       | Querticin                 | 15661826 | 300.26  |  |
|                         | Myricetin                 | 2581672  | 318.23  |  |
|                         | Apigenin                  | 5280443  | 270.23  |  |
|                         | Kaempferol                | 5280863  | 286.23  |  |
|                         | Luteolin                  | 5280445  | 286.23  |  |
|                         | Phloretin                 | 4788     | 274.26  |  |
| Antioxidant/polyphenols | Catechin                  | 9064     | 290.26  |  |
|                         | Ascorbic acid             | 54670067 | 176.16  |  |
|                         | BHT                       | 31404    | 220.35  |  |
|                         | Nordihydroguaiaretic acid | 4534     | 302.36  |  |
|                         | Curcumin                  | 969516   | 368.37  |  |
|                         | N-propyl gallate          | 4947     | 212.19  |  |
|                         | Chlorogenic acid          | 1794427  | 354.3   |  |
|                         | Tannic acid               | 16129778 | 1701.19 |  |
| Anti-inflammatory drugs | Dexamethasone             | 5743     | 392.46  |  |
|                         | Indomethacin              | 3715     | 357.78  |  |
|                         | Sodium cromoglycate       | 27503    | 512.33  |  |
|                         | Salicylates               | 54675850 | 137.11  |  |
|                         | Sodium aurothiomalate     | 22318    | 390.07  |  |

### Text 1

- 1. Secondary structure details of EHY
  - a) Helix regions: Corresponding residue numbers are given below

α1:45-50, α2:100-103, α3:106-120, α4:140-143, α5:149-162, α6:168-197, α7:229-244, α8:261-281, α9:307-320, α10:337-369 & α11:415-424.

b)  $\beta$ -sheets region:

β1:37-41, β2:75-78, β3:129-132, β4:202-204 β5:291-294, β6:324-328, β7:374-378, β8:394-398, β9:407-411, β10:425-429.





Fig.1 MSA of four Hyal sequences was performed using clustalX and captured image by JalView. The large rectangular box shows the conserved pattern nearby catalytic site region and conserved cysteine and tyrosine residues are also highlighted in vertical rectangular box.

#### Table 2

| Ligand         | Donor Hydrogen | Acceptor Hydrogen | Bond distance |
|----------------|----------------|-------------------|---------------|
|                |                |                   | (Å)           |
| 1.Catechin     | О4-Н           | Asp133-OD2        | 2.7           |
|                | О5-Н           | Asp91-OD1         | 2.6           |
|                | О6-Н           | Asp91-OD1         | 2.5           |
|                | Lys148-N1HZ    | 06                | 3.1           |
| 2. Chlorogenic | O4H            | Asp133OD2         | 2.7           |
| _              | Tyr206OH       | 03                | 3.2           |
|                | Arg271N2H2     | O5                | 3.0           |
|                | Arg271N2H2     | O6                | 3.1           |
|                | Arg295N1H1     | 09                | 3.0           |
|                | Arg295N2H2     | 08                | 2.6           |
| 3. Kaempferol  | О5-Н           | Asp133-OD2        | 2.7           |
|                | Arg295-NH2     | 03                | 3.1           |
|                | Arg271NH2      | 06                | 2.9           |

| 4. Mimosine | Arg295NH2  | 03        | 2.7 |
|-------------|------------|-----------|-----|
|             | N1H1       | Asp133OD2 | 2.8 |
|             | N2H2       | Asp133OD1 | 2.6 |
|             | Asn136NDZ  | 02        | 2.9 |
| 5.Myricetin | Asp251ND2  | O3        | 3.4 |
|             | Tyr206-OH  | O4        | 2.7 |
|             | O2H        | Asp133OD2 | 3.3 |
|             | O7H        | Asp133OD1 | 2.7 |
|             | Asp136ND2  | 08        | 3.2 |
|             | O6H        | Asp91OD1  | 3.1 |
|             | Lys148NZH1 | 08        | 3.2 |
|             | Lys148NZH2 | 06        | 2.9 |

# Table 3

|             | Atom 1    | Atom 2    | Distance | Atom1     | Atom2     | Distance |
|-------------|-----------|-----------|----------|-----------|-----------|----------|
|             |           |           | (Å)      |           |           | (Å)      |
| Chlorogenic | CGA B 450 | HIS A 94  | 3.38     | Myricetin |           |          |
| acid (CGA)  | 05        | CB        |          | (MYR)     |           |          |
|             | CGA B 450 | HIS A 94  | 3.73     | MYR B 450 | TYR A 300 | 3.76     |
|             | 05        | CA        |          | 06        | CZ        |          |
|             | CGA B 450 | HISA 94 N | 3.88     | MYR B 450 | TYR A 300 | 3.43     |
|             | C11       |           |          | 06        | CE1       |          |
|             | CGA B 450 | GLY A 93  | 3.86     | MYR B 450 | ALA A 299 | 3.67     |
|             | 06        | С         |          | 06        | C         |          |
|             | CGA B 450 | LEUA 70   | 3.52     | MYR B 450 | ALA A 299 | 3.47     |
|             | 07        | CD1       |          | O6        | CB        |          |
|             | CGA B 450 | LEUA 70   | 3.67     | MYR B 450 | ALA A 299 | 3.82     |
|             | 07        | CG        |          | 06        | CA        |          |
| Mimosine    | MIM B 450 | TYR A 206 | 3.52     | MYR B 450 | ARG A 295 | 3.59     |
| (MIM)       | 03        | CZ        |          | C8        | NH1       |          |
|             | MIM B 450 | TYR A 206 | 3.68     | MYR B 450 | ARG A 295 | 3.76     |
|             | 03        | CE2       |          | C3        | NH1       |          |
|             | MIM B 450 | GLU A 135 | 3.07     | MYR B 450 | ARG A 295 | 3.76     |
|             | C3        | OE1       |          | C8        | CZ        |          |
|             | MIM B 450 | GLU A 135 | 3.70     | MYR B 450 | TYR A 293 | 3.61     |
|             | C1        | OE1       |          | 05        | CE2       |          |
|             | MIM B 450 | GLU A 135 | 3.87     | MYR B 450 | TYR A 293 | 3.81     |
|             | C3        | CD        |          | 05        | CD2       |          |
|             | MIM B 450 | GLU A 135 | 3.74     | MYR B 450 | TYR A 253 | 3.67     |
|             | C1        | CD        |          | C5        | OH        |          |
|             | MIM B 450 | ASP A 133 | 3.19     | MYR B 450 | TYR A 253 | 3.71     |
|             | C4        | OD2       |          | C6        | OH        |          |
|             | MIM B 450 | ASPA 133  | 3.53     | MYR B 450 | TYR A 253 | 3.58     |
|             | C3        | OD2       |          | C1        | OH        |          |
|             | MIM B 450 | ASPA 133  | 3.05     | MYR B 450 | TYR A 253 | 3.81     |
|             | C1        | OD2       |          | C1        | CZ        |          |
|             | MIM B 450 | ASP A 133 | 3.28     | MYR B 450 | TYR A 253 | 3.71     |
|             | C1        | OD1       |          | C7        | CZ        |          |
|             | MIM B 450 | ASP A 133 | 3.86     | MYR B 450 | TYR A 253 | 3.59     |
|             | C2        | OD1       |          | 03        | CE1       |          |
|             | MIM B 450 | ASP A 133 | 3.70     | MYR B 450 | TYR A 253 | 3.62     |
|             | C4        | CG        |          | C7        | CE1       |          |

| MIM B 450 | ASPA 133 | 3.38 | MYR B 450 | TYR A 253 | 3.63 |
|-----------|----------|------|-----------|-----------|------|
| C1        | CG       |      | C12       | CD2       |      |
| MIM B 450 | PROA 80  | 3.23 | MYR B 450 | TYR A 253 | 3.71 |
| 02        | CD       |      | 05        | CD2       |      |
| MIM B 450 | PROA 80  | 3.58 | MYR B 450 | TYR A 253 | 3.75 |
| N2        | CG       |      | C11       | CD2       |      |
| MIM B 450 | PROA 80  | 3.66 | MYR B 450 | TYR A 253 | 3.57 |
| 02        | CG       |      | 03        | CD1       |      |
| MIM B 450 | TYRA 79  | 3.54 | MYR B 450 | TYR A 253 | 3.74 |
| 02        | CD2      |      | C7        | CD1       |      |
|           |          |      | MYR B 450 | TYR A 253 | 3.70 |
|           |          |      | C12       | CD1       |      |
|           |          |      | MYR B 450 | TYR A 253 | 3.49 |
|           |          |      | C12       | CG        |      |
|           |          |      | MYR B 450 | TYR A 214 | 3.50 |
|           |          |      | C12       | OH        |      |
|           |          |      | MYR B 450 | TYR A 214 | 3.13 |
|           |          |      | 03        | CZ        |      |
|           |          |      | MYR B 450 | TYR A 214 | 3.15 |
|           |          |      | 03        | CE1       |      |
|           |          |      | MYR B 450 | TYR A 206 | 3.76 |
|           |          |      | C11       | OH        |      |

Figure 2



Fig.2: The radius of gyration of EHY (apo), EHY1 (with CGA), EHY2 (with MIM) and EHY3 (with MYR) were shown in figure. Color legend for each form is mentioned within small rectangular box.





Fig.3. The Hydrogen bond occupancies (A) for the better binding plant compounds (EHY1 – with CGA, EHY2 – with MIM and EHY3 – with MYR) and  $\Phi$  and  $\psi$  angle (in the range of -180 to +180) distribution of functionally important residues D133 (B), E135 (C), R138 (D), Y79 (E) and Y206 (F) are depicted in the above figure.

Text for Fig.3; B to F:

ASP133 residue dispersion was largely clustered in the core  $\beta$ -sheet region within the range of  $\Phi$ =-150, -30 and  $\psi$ =+50, +175. The ASP133 in EHY1 and EHY2 was observed with less scattering reveals that CGA and MIM binding with this catalytic residue. When in fact, GLU135 in apo form was widely dispersed in helical region ( $\Phi$ =+1, -165 and  $\psi$ =-100, +60) compared to the ligand bound forms. These observations extended that the ligand binding had made both ASP133 and GLU135 conformation rigid within the range of  $\beta$ -sheet. In MIM bound form, ARG138 was most widely scattered in the range of  $\Phi$ =+25, -170 and  $\psi$ =+80, +170. Interestingly, the ARG138 distribution was very less in apo form in comparison with ligand bound forms. This states that ligand binding induces more conformational change of ARG138. The TYR79 and TYR206distributions were most restricted in EHY3 within the range of  $\Phi$ =-10, -150 and  $\psi$ =+90, +160 due the strong hydrophobic interaction formed by MYR.

Figure 4



Fig.4: PCA based 2-D projection was plotted between PC1 and PC2 for apo (EHY) and ligand bound forms (EHY1, EHY2 and EHY3). Color representation for each form distribution was shown in square box shape and legend is mentioned within a rectangular box.





Fig.5.The conformational changes between docking to FEL poses are shown in the figure. The helical

axis (in degree and distance in angstrom) and loop changes of A) CGA, B) MIM and C) MYR bound are highlighted. Here light and dark colors are representing the dock and FEL conformations of EHY respectively.

## Figure 6



Fig.6 The structural dislocation and rearrangement of EHY in unligated and ligated forms are shown in this figure. The cut-off of the displacement is set as 4 Å. The residues involved in the large dislocations are highlighted and the distance of dislocation is denoted in angstrom. The light color ribbons are average conformation of A) apo, B) CGA, C) MIM and D) MYR bound forms and dark blue colors represent the large translocated conformation of EHY.

### **Complete Reference of 34**

Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.;

Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.