SUPPORTING INFORMATION

New substituted 9-propyladenine derivatives as $A_{2 A}$ adenosine receptor antagonists

C. Lambertucci, ${ }^{a}$ M. Buccioni, ${ }^{a}$ D. Dal Ben, ${ }^{a}$ S. Kachler, ${ }^{b}$ G. Marucci, ${ }^{a}$ A. Spinaci, ${ }^{a}$ A. Thomas, ${ }^{a}$ K.- N. Klotz, ${ }^{b}$ and R. Volpini ${ }^{a}$
${ }^{a}$ School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
${ }^{b}$ Universität Würzburg, Institut für Pharmakologie und Toxikologie, Versbacher Str. 9, 97078, Würzburg, Germany.

1. Experimental section

1.1 Chemistry

General: Reactions were routinely monitored by thin-layer chromatography (TLC) on silica gel (precoated F_{254} Merck plates) and products visualized with UV light $\lambda=254 \mathrm{~nm}$ and iodine vapors. Chromatographies were performed using Fluka 230-400 mesh silica gel or Analtech preparative TLC (pTLC). All reported products showed ${ }^{1} \mathrm{H}$ NMR spectra in agreement with the assigned structures. Yields were calculated after chromatography. ${ }^{1} \mathrm{H}$ NMR spectra were obtained with Varian Mercury 400 MHz spectrometer; δ in ppm, J in Hz . All exchangeable protons were confirmed by addition of $\mathrm{D}_{2} \mathrm{O}$. Melting points were determined on a Büchi instrument and are uncorrected. Elemental analyses were determined on Fisons Instruments Model EA 1108 CHNS-O model analyzer and are within 0.4% of theoretical values. Purity of the compounds was $\geq 95 \%$ according to elemental analysis data (Table 1).

1.1.1 General procedure for the synthesis of 2-alkylamino-9-proyladenine derivatives 12-14.

To compound $11^{11}(500 \mathrm{mg} ; 2.36 \mathrm{mmol})$ the suitable amine was added and the solution was stirred at $120^{\circ} \mathrm{C}$ for 24 h . The amine in excess was removed in vacuo by oil pump and the residue was flash chromatographed on a silica gel column with the appropriate eluent.
N^{2}-benzyl-9-propyl-9H-purine-2,6-diamine (12): Compound 11 was reacted with benzylamine (6.4 mL). The reaction crude was purified eluting with $\mathrm{cC}_{6} \mathrm{H}_{12}-\mathrm{EtOAc}-\mathrm{MeOH}(60: 37: 3)$ to give $\mathbf{1 2}$ as a white solid ($286 \mathrm{mg}, 45 \%$ yield). M.p.: $130-131^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $\delta=0.79\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.88\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 4.43\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{NHCH}_{2}\right), 6.63(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.79(\mathrm{t}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{NH}), 7.22(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ph}), 7.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$. Anal calcd for $\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{2}-phenethyl-9-propyl-9H-purine-2,6-diamine (13): Compound 11 was reacted with 2-phenylethylammine (6.0 mL). The reaction crude was purified eluting with $\mathrm{cC}_{6} \mathrm{H}_{12}$ - $\mathrm{EtOAc}-\mathrm{MeOH}(60: 37: 3)$ to give $\mathbf{1 3}$ as a white solid ($620 \mathrm{mg}, 88 \%$ yield). M.p. $=78-79{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta=0.83\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.73\left(\mathrm{~m}, 2 \mathrm{H}, C H_{2} \mathrm{CH}_{3}\right), 2.78\left(\mathrm{t}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, C H_{2} \mathrm{Ph}\right), 3.3(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{NHCH} 2), 3.89\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 6.2(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}), 6.6\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.23(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ph}), 7.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$. Anal calcd for $\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{6}\right) \mathrm{C}$, H, N.
N^{2}-(3-phenylpropyl)-9-propyl-9H-purine-2,6-diamine (14): Compound 11 was reacted with 3-phenylpropylammine (8.79 mL). The reaction crude was purified eluting with $\mathrm{EtOAc}-\mathrm{cC}_{6} \mathrm{H}_{12}-\mathrm{MeOH}$ ($57: 38: 5$) to give $\mathbf{1 4}$ as a white solid ($549 \mathrm{mg}, 75 \%$ yield). M.p. $118-119^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta=0.80\left(\mathrm{t}, 3 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.60(\mathrm{t}, 2 \mathrm{H}, J=5.4 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{Ph}$), $3.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH} 2), 3.88\left(\mathrm{t}, 2 \mathrm{H}, J=4.8 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 6.30(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}), 6.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.20(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ph}), 7.66(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-8)$. Anal calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

1.1.2 General procedure for the synthesis of the 2-alkylamino-8-bromo-9-propyladenine derivatives 15-17

To 1.0 mmol of the appropriate 2-alkylamino-9-propyladenine 12-14, dissolved in 18 mL of anhydrous DMF, NBS (272 mg ; 1.53 mmol) was added. The reaction is instantaneous, the solvent was removed in vacuo and the crude residue was chromatographed by flash silica gel column eluting with the suitable solvent to obtain desired compounds 15-17 as white solids.
N^{2}-Benzyl-8-bromo-9-propyl-9H-purine-2,6-diamine (15): Compound 15 was obtained from compound 12. The crude reaction mixture was purified by eluting with $\mathrm{cC}_{6} \mathrm{H}_{12}$ - $\mathrm{EtOAc}-\mathrm{MeOH}(80: 19.5: 0.5)$ to give $\mathbf{1 5}\left(82 \mathrm{mg}, 50 \%\right.$ yield). M.p. $168-169{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta=0.80\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.88\left(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 4.43(\mathrm{~d}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}$, NHCH_{2}), $6.84\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.0(\mathrm{t}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{NH}), 7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ph})$. Anal calcd for $\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrN}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
8-Bromo- N^{2}-phenethyl-9-propyl-9H-purine-2,6-diamine (16): Compound 16 was obtained from 13. The crude reaction mixture was purified by eluting with $\mathrm{cC}_{6} \mathrm{H}_{12}$ - $\mathrm{EtOAc}-\mathrm{MeOH}(80: 19.5: 0.5)$ to give 16 ($263 \mathrm{mg}, 49 \%$ yield). M.p. $139-140{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta=0.85\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.81\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}$) , 3.92 $\left(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 6.47(\mathrm{bt}, 1 \mathrm{H}, \mathrm{NH}), 6.83\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.24(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ph})$. Anal calcd for $\left(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrN}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
8-Bromo- N^{2}-(3-phenylpropyl)-9-propyl-9H-purine-2,6-diamine (17): Compound 17 was obtained from 14. The crude reaction mixture was purified by eluting with $\mathrm{cC}_{6} \mathrm{H}_{12}$ - $\mathrm{EtOAc}-\mathrm{MeOH}(70: 29: 1)$ to give $17\left(130 \mathrm{mg}, 35 \%\right.$ yield). M.p. $103-104{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO-d $\left.d_{6}\right) \delta=0.82\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.74\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ and $\left.\mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 2.60\left(\mathrm{t}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}, C H_{2} \mathrm{Ph}\right), 3.21(\mathrm{~m}, 2 \mathrm{H}$,
$\left.\mathrm{NHCH}_{2}\right), 3.89\left(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 6.46(\mathrm{bt}, 1 \mathrm{H}, \mathrm{NH}), 6.77\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.21(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ph})$. Anal calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{BrN}_{6}\right) \mathrm{C}$, H, N.

1.1.3 General procedure for the synthesis of 8-(2-furyl)-9-propyladenine derivatives 18-20 and 29-31

To 0.27 mmol of the appropriate 2-alkylamino-8-bromo-9-propyladenine $\mathbf{1 5 - 1 7}$ or N^{6}-alkyl-8-bromo-9-propyladenine 26-28 solubilized in 1.4 mL of anhydrous THF $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}(11.4 \mathrm{mg}, 0.02 \mathrm{mmol})$ and (2-tributylstannyl)furane ($436 \mu \mathrm{~L}, 1.35 \mathrm{mmol}$) were added. The reaction mixture was left in anhydrous conditions at 60° for 3 h after which another portion of 2-(tributylstannyl)furan $(218 \mu \mathrm{~L}, 67.5 \mathrm{mmol})$ was added. After 18 h of total reaction time, the solvent was removed in vacuo and the residue was chromatographed on a silica gel column eluting with the suitable solvent, to give the desired compounds 18-20.
N^{2}-benzyl-8-(furan-2-yl)-9-propyl-9H-purine-2,6-diamine (18): Compound 18 was obtained from $\mathbf{1 5}$ after a flash column chromatography eluting with $\mathrm{EtOAc}-\mathrm{cC}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3} \mathrm{OH}(60: 38: 2)$ and then by pTLC eluted with $\mathrm{EtOAc}-\mathrm{cC}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3} \mathrm{OH}(60: 37: 3)$ as white solid ($52 \mathrm{mg}, 55 \%$ yield). M.p. $=113-113.4^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta=0.79\left(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.65(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $4.17\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 4.46\left(\mathrm{~d}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{NHCH}_{2}\right), 6.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{furyl}), 6.82\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.95(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}$-furyl and NHCH_{2}), 7.26 (m, 5H, H-Ph), 7.86 (d, $1 \mathrm{H}, \mathrm{H}$-furyl). Anal calcd for $\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
8-(Furan-2-yl)- N^{2}-phenethyl-9-propyl-9H-purine-2,6-diamine (19): Compound 19 was obtained from 16 after a flash column chromatography eluting with $\mathrm{EtOAc}-\mathrm{cC}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3} \mathrm{OH}(60: 38: 2)$ as white solid ($67 \mathrm{mg}, 66 \%$ yield). M.p. $=119-120^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO $\left.-d_{6}\right) \delta=0.85\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.84\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.33(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}), 4.22$ (t, $2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{NCH}_{2}$), $6.43\left(\mathrm{t}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, N H \mathrm{CH}_{2}\right), 6.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}\right.$-furyl), $6.81\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.95(\mathrm{~d}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}, \mathrm{H}-$ furyl), 7.28 (m, 5H, H-Ph), 7.87 (d, 1H, H-furyl). Anal calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
8-(Furan-2-yl)- N^{2}-(3-phenylpropyl)-9-propyl-9H-purine-2,6-diamine (20): Compound 20 was obtained from 17 after a flash column chromatography eluting with $\mathrm{EtOAc}-\mathrm{cC}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3} \mathrm{OH}(60: 38: 2)$ and then by pTLC eluted with $\mathrm{EtOAc}-\mathrm{cC}_{6} \mathrm{H}_{12}-\mathrm{CH}_{3} \mathrm{OH}$ (60:35:5) to give 20 as a white solid ($71.2 \mathrm{mg}, 70 \%$ yield). M.p. $107-108^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta=0.81\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), $1.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ and $\left.\mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 2.62\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}$), $4.17(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{NCH} 2), 6.46$ ($\mathrm{t}, 1 \mathrm{H}, \mathrm{NHCH}_{2}$), $6.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}\right.$-furyl), 6.77 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.94 (d, $1 \mathrm{H}, \mathrm{H}$-furyl), $7.20(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ph}), 7.86$ (d, $1 \mathrm{H}, \mathrm{H}$-furyl). Anal calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N-benzyl-8-(furan-2-yl)-9-propyl-9H-purin-6-amine (29): Compound 29 was obtained from 26 . The crude residue was purified by eluting with $\mathrm{cC}_{6} \mathrm{H}_{12}$: EtOAc: $\mathrm{CH}_{3} \mathrm{OH}(70: 29: 1)$, to give $29\left(21 \mathrm{mg}, 24 \%\right.$ yield) as a white solid. M.p. $122{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta=$ $0.84\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.34\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.69(\mathrm{bt}, 1 \mathrm{H}, \mathrm{NHCH} 2), 6.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-f u r y l)$, 7.23 (m, 6H, H-Ph and H-furyl), 7.98 (s, 1H, H-furyl), 8.21 (s, $1 \mathrm{H}, \mathrm{H}-2$) 8,5 (bt, $1 \mathrm{H}, \mathrm{NH}$). Anal calcd for $\left(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-(Furan-2-yl)-N-phenethyl-9-propyl-9H-purin-6-amine (30): Compound 30 was obtained from 27. The crude residue was purified by eluting with $\mathrm{cC}_{6} \mathrm{H}_{12}: E t O A c: \mathrm{CH}_{3} \mathrm{OH}(70: 29: 1)$, to give $\mathbf{3 0}\left(76 \mathrm{mg}, 82 \%\right.$ yield) as a vitreous solid. ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) δ $=0.84\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.92\left(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}), 4.37(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{NCH}_{2}$), 6.75 (m, 1H, H-furyl), 7.4 (d, $1 \mathrm{H}, \mathrm{H}$-furyl), $7.22(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ph}$), 7.98 (bs, $2 \mathrm{H}, \mathrm{NH}$ and H -furyl), 8,25 (s, $1 \mathrm{H}, \mathrm{H}-2$). Anal calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
8-(Furan-2-yl)-N-(3-phenylpropyl)-9-propyl-9H-purin-6-amine (31): Compound $\mathbf{3 1}$ was obtained from 28. The crude residue was purified by eluting with $\mathrm{cC}_{6} \mathrm{H}_{12}: \mathrm{EtOAc}^{2} \mathrm{CH}_{3} \mathrm{OH}(75: 24: 1)$, to give $31\left(59 \mathrm{mg}, 61 \%\right.$ yield) as a vitreous solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ $=0.84\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 2.65\left(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, C H_{2} \mathrm{Ph}\right), 3.51(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{NHCH} 2), 4.37\left(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 6.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ furyl), $7.20(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-\mathrm{Ph}$ and H -furyl), 7.97 (bs, $2 \mathrm{H}, \mathrm{NH}$ and H -furyl), $8,22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2)$. Anal calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

6-chloro-9-propyl-9H-purine (22) and 6-chloro-7-propyl-7H-purine (22a): To commercially available 6-chloropurine (21, 3.0 g , $19.39 \mathrm{mmol})$, in anhydrous DMF $(20 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(2.9 \mathrm{~g}, 21.12 \mathrm{mmol})$ and propyl iodide ($2.27 \mathrm{~mL}, 23.28 \mathrm{mmol}$) were added. The reaction mixture was left in anhydrous conditions at romm temperature for 14 h and then the solvent was removed in vacuo and the residue chromatographed on a silica gel flash column eluting with $c \mathrm{C}_{6} \mathrm{H}_{12}$ - EtOAc ($80: 20$ to $70: 30$), to give 22 ($2.45 \mathrm{~g}, 64 \%$ yield), and $22 \mathrm{a}\left(1.07 \mathrm{~g}, 28 \%\right.$ yield) as white solids. 22: ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta=0.83\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.24$ ($\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{NCH}$) , $8.71\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2\right.$), $8.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$. Anal calcd for $\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{ClN}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N} .22 \mathrm{a}:{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta$ $\left.0.87\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.43(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{NCH})_{2}\right), 8.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 8.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$. They were characterized by NMR data comparison of analogue purine derivatives. ${ }^{1,2}$ Anal calcd for $\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{ClN}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

1.1.4 General procedure for the synthesis of N^{6}-phenylalkyl-9-propyladenine (23-25)

To a solution of $22(1.00 \mathrm{~g}, 5.08 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(92 \mathrm{~mL})$, DMAP $(0.75 \mathrm{~g}, 30 \mathrm{mmol})$ and the suitable amine (30 mmol) were added. The reaction mixture was stirred, in anhydrous conditions, at $70^{\circ} \mathrm{C}$ for 12 h . Then, the solvent was removed in vacuo and the residue was chromatographed on a silica gel flash column eluting with $\mathrm{cC}_{6} \mathrm{H}_{12}-\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(70: 29.5: 0.5$, v/v), to give the desired compounds 23-25 as white solids.
\boldsymbol{N}-benzyl-9-propyl-9H-purin-6-amine (23): Compound 23 was obtained by the reaction of $\mathbf{2}$ with benzylamine as white solid (0.95 $\mathrm{g}, 78 \%$ yield). M.p.: $129-130^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}$) $\delta=0.79\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), $1.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.09(\mathrm{t}, 2 \mathrm{H}, J=7.2$ $\mathrm{Hz}, \mathrm{NCH}_{2}$), $4.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{2}\right), 7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ph}), 8.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 8.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.29(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH})$. Anal calcd for $\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
\mathbf{N}-phenethyl-9-propyl-9H-purin-6-amine (24): Compound $\mathbf{2 4}$ was obtained by the reaction of $\mathbf{2}$ with 2-phenylethylamine as white solid ($1.31 \mathrm{~g}, 92 \%$ yield). M.p.: $75-77^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $\delta=0.79\left(\mathrm{t}, 3 \mathrm{H}, J=10.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$), $1.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.87(\mathrm{t}$, $\left.2 \mathrm{H}, J=11.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{2}\right), 4.06(\mathrm{t}, 2 \mathrm{H}, J=10.5 \mathrm{~Hz}, \mathrm{NCH}$) , $7.22(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ph}), 7.71(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 8.18(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-8), 8.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2)$. Anal calcd for $\left(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
\boldsymbol{N}-(3-phenylpropyl)-9-propyl-9H-purin-6-amine (25): Compound 25 was obtained by the reaction of $\mathbf{2}$ with 3-phenylpropylamine $\left(0.79 \mathrm{~g}, 58 \%\right.$ yield) as white solid. M.p.: $67-70{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta=0.82\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.82\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ and $\mathrm{NHCH}_{2} \mathrm{CH}_{2}$), $2.61\left(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{2}\right), 4.09\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 7.23(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ph}), 7.8$ (bs, 1H, NH), 8.12 (s, 1H, H-2), 8.18 (s, $1 \mathrm{H}, \mathrm{H}-8$). Anal calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
8-Bromo-N-(3-phenylpropy)-9-propyl-9H-purin-6-amine (28): Compound 28 was prepared starting from 33. The reaction mixture was stirred at 60° for 4 h to give $28(197 \mathrm{mg}, 53 \%)$ as a white solid. M.p.: $105-106^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta=0.85(\mathrm{t}, 3 \mathrm{H}$,
$\left.J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.82\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.64\left(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}), 4.09(\mathrm{t}, 2 \mathrm{H}, J=7.8$ $\left.\mathrm{Hz}, \mathrm{NCH}_{2}\right), 7.23(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ph}), 8.04(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 8.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2)$. Anal calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrN}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

1.1.5 General procedure for the synthesis of the N^{6}-alkyl-8-bromo-9-propyladenine derivatives 26 and 27

To 1.0 mmol of the appropriate N^{6}-alkyl-9-propyladenine 23 and $\mathbf{2 4}$, dissolved in 5.5 mL of anhydrous $\mathrm{CH}_{3} \mathrm{CN}$, NBS $(267 \mathrm{mg}, 1.50$ mmol) was added. The reaction was left in anhydrous conditions under stirring at room temperature for 16 h , then, the solvent was removed in vacuo and the crude residue was chromatographed by flash silica gel column eluting with the suitable solvent to obtain desired compounds 26 and 27 as white solids.
N -benzyl-8-bromo-9-propyl-9H-purin-6-amine (26): Compound 26 was obtained from 23 . The crude reaction mixture was purified by eluting with $\mathrm{cC}_{6} \mathrm{H}_{12}-\mathrm{CHCl}_{3}(80: 20$ to $50: 50)$, to give $26\left(123 \mathrm{mg}, 19 \%\right.$ yield). M.p. $116-118{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta=$ $0.82\left(\mathrm{t}, 3 \mathrm{H}, J=10.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 4.05\left(\mathrm{t}, 2 \mathrm{H}, J=10.6 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 4.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}), 7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-$ $\mathrm{Ph}), 8.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 8.5(\mathrm{bt}, 1 \mathrm{H}, \mathrm{NH})$. Anal calcd for $\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrN}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
8-Bromo- N-phenethyl-9-propyl-9H-purin-6-amine (27): Compound 27 was obtained from 24. The crude reaction mixture was purified by eluting with $\mathrm{cC}_{6} \mathrm{H}_{12}-\mathrm{CHCl}_{3}(80: 20$ to $50: 50)$, to give $27\left(212 \mathrm{mg}, 38 \%\right.$ yield). M.p. $85-87{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta=$ $0.84\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.89\left(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}), 4.08(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2}\right), 7.22(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ph}), 8.04(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 8.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2)$. Anal calcd for $\left(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrN}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-Bromo-6-iodo-9-propyl-9H-purine (33): To a solution of 32 ($370 \mathrm{mg}, 1.44 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ (6.3 mL), diiodometane $(7.01 \mathrm{~mL})$ and isoamyl nitrite $(2.1 \mathrm{~mL})$ were added. The reaction mixture was stirred under anhydrous conditions at $85{ }^{\circ} \mathrm{C}$ for 30 min. Then, the solvent was removed in vacuo and the residue was flash chromatographed on a silica gel column eluting with $\mathrm{CHCl}_{3}-$ $\mathrm{cC}_{6} \mathrm{H}_{12}(60: 40)$, to give 33 (274 mg, 54% yield). M.p. $138-139{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta=0.87\left(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.82(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.19\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 8.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2)$.

Table 1: Elemental data analysis of synthesized compounds $x-x$.

	Calculated			Found			
$\mathbf{C p d}$	$\mathbf{M o l}^{\prime}$ formula	\mathbf{C}	\mathbf{H}	\mathbf{N}	\mathbf{C}	\mathbf{H}	\mathbf{N}
$\mathbf{1 2}$	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{6}$	63.81	6.43	29.77	63.98	6.64	29.35
$\mathbf{1 3}$	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{6}$	64.84	6.80	28.36	65.01	6.87	28.11
$\mathbf{1 4}$	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{6}$	65.78	7.14	27.07	65.89	7.29	26.89
$\mathbf{1 5}$	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrN}_{6}$	49.87	4.74	23.26	49.91	4.85	23.05
$\mathbf{1 6}$	$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrN}_{6}$	51.21	5.10	22.39	51.37	5.23	22.21
$\mathbf{1 7}$	$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{BrN}_{6}$	52.45	5.44	21.59	52.55	5.60	21.47
$\mathbf{1 8}$	$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}$	65.50	5.79	24.12	65.59	5.87	24.00
$\mathbf{1 9}$	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}$	66.28	6.12	23.19	66.39	6.18	23.08
$\mathbf{2 0}$	$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}$	67.00	6.43	22.32	67.19	6.50	22.16
$\mathbf{2 2}$	$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{ClN}_{4}$	48.87	4.61	28.49	48.92	4.73	28.33
$\mathbf{2 2 a}$	$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{ClN}_{4}$	48.87	4.61	28.49	48.95	4.68	28.43
$\mathbf{2 3}$	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{5}$	67.39	6.41	26.20	67.47	6.67	26.09
$\mathbf{2 4}$	$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{5}$	68.30	6.81	24.89	68.41	6.81	24.79
$\mathbf{2 5}$	$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5}$	69.12	7.17	23.71	69.26	7.19	23.69
$\mathbf{2 6}$	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrN}_{5}$	52.04	4.66	20.23	52.14	4.69	20.18
$\mathbf{2 7}$	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrN}_{5}$	53.34	5.04	19.44	53.37	5.10	19.40
$\mathbf{2 8}$	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrN}_{5}$	54.55	5.39	18.71	54.69	5.43	18.61
$\mathbf{2 9}$	$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}$	68.45	5.74	21.01	68.55	5.79	20.97
$\mathbf{3 0}$	$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}$	69.14	6.09	20.16	69.19	6.13	20.12
$\mathbf{3 1}$	$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}$	69.78	6.41	19.38	69.88	6.45	19.31
$\mathbf{3 3}$	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrIN}_{4}$	26.18	2.20	15.27	26.28	2.22	15.25

1.2 Biology

All pharmacological methods followed the procedures as described earlier. ${ }^{3}$ In brief, membranes for radioligand binding were prepared from CHO cells stably transfected with human adenosine receptor subtypes in a two-step procedure. In a first low-speed step $(1,000 \mathrm{x} \mathrm{g})$ cell fragments and nuclei were removed. The crude membrane fraction was sedimented from the supernatant at $100,000 \mathrm{xg}$. The membrane pellet was resuspended in the buffer used for the respective binding experiments, frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$. For the measurement of adenylyl cyclase activity only one high speed centrifugation of the homogenate was used. The resulting crude membrane pellet was resuspended in 50 mM Tris $/ \mathrm{HCl}, \mathrm{pH} 7.4$ and immediately used for the cyclase assay.
For radioligand binding at $\mathrm{A}_{1} \mathrm{AR}$, at $\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$, and at $\mathrm{A}_{3} \mathrm{AR} 1 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right] \mathrm{CCPA}, 10 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right] \mathrm{NECA}$, and $1 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right] \mathrm{HEMADO}$ were used, respectively. Non specific binding of $\left[{ }^{3} \mathrm{H}\right] \mathrm{CCPA}$ was determined in the presence of 1 mM theophylline, in the case of $\left[{ }^{3} \mathrm{H}\right] \mathrm{NECA}$ and $\left[{ }^{3} \mathrm{H}\right]$ HEMADO $100 \mathrm{pM} N^{6}-(R)$-phenylisopropyladenosine (R-PIA) was used. Ki values from competition experiments were calculated with the program SCTFIT. ${ }^{4}$ Radioligand binding at $\mathrm{A}_{2 \mathrm{~B}} \mathrm{AR}$ is problematic as no high-affinity ligand is available for this subtype. Therefore, inhibition of NECA-stimulated adenylyl cyclase activity was determined as a measurement of affinity of compounds. EC_{50}-values from these experiments were converted to Ki -values with the Cheng and Prusoff equation. ${ }^{5}$

1.3 Molecular Modelling

All molecular modelling studies were performed on a 2 CPU (PIV 2.0-3.0 GHZ) Linux PC. Homology modelling, energy minimization, and docking studies were carried out using MOE (version 2010.10) suite. ${ }^{6}$ All ligand structures were optimized using RHF/AM1 semiempirical calculations and the software package MOPAC implemented in MOE was utilized for these calculations. ${ }^{7}$

1.3.1 Refinement of the human $A_{2 A} A R$ structures

The crystal structure of the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ in complex with ZM241385 were retrieved from the Protein Data Bank (http://www.rcsb.org; pdb code: 3EML; 2.6-A resolution ${ }^{8}$).
The structure was re-modelled by firstly removing the T4L external segment and secondly by performing a building of missing receptor regions (i.e. missing sections of EL2 or IL3 domains). The Homology Modelling tool of MOE was employed. In detail, the boundaries identified from the used $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ X-ray crystal structure were applied and the missing loop domains were built by the loop search method implemented in MOE. Once the heavy atoms were modelled, all hydrogen atoms were added, and the protein coordinates were then minimized with MOE using the AMBER99 force field. ${ }^{9}$ The minimizations were performed by 1000 steps of steepest descent followed by conjugate gradient minimization until the RMS gradient of the potential energy was less than 0.05 kJ $\mathrm{mol}^{-1} \AA^{-1}$. Reliability and quality of the model were checked using the Protein Geometry Monitor application within MOE, which provides a variety of stereochemical measurements for inspection of the structural quality in a given protein, like backbone bond lengths, angles and dihedrals, Ramachandran $\varphi-\psi$ dihedral plots, and sidechain-rotamer and non-bonded contact quality.

1.3.2 Molecular docking analysis

All compound structures were docked into the binding site of the three $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ models using the MOE Dock tool. This method is divided into a number of stages: Conformational Analysis of ligands. The algorithm generated conformations from a single 3D conformation by conducting a systematic search. In this way, all combinations of angles were created for each ligand. Placement. A collection of poses was generated from the pool of ligand conformations using Triangle Matcher placement method. Poses were generated by superposition of ligand atom triplets and triplet points in the receptor binding site. The receptor site points are alpha sphere centres which represent locations of tight packing. At each iteration a random conformation was selected, a random triplet of ligand atoms and a random triplet of alpha sphere centres were used to determine the pose. Scoring. Poses generated by the placement methodology were scored using two available methods implemented in MOE, the London $d G$ scoring function which estimates the free energy of binding of the ligand from a given pose, and Affinity $d G$ scoring which estimates the enthalpy contribution to the free energy of binding. The top 30 poses for each ligand were output in a MOE database.

1.4.2 Post Docking analysis

The docking poses of each compound were then subjected to AMBER99 force field energy minimization until the RMS gradient of the potential energy was less than $0.05 \mathrm{~kJ} \mathrm{~mol}^{-1} \AA^{-1}$. Receptor residues within $6 \AA$ distance from the ligand were left free to move, while the remaining receptor coordinates were kept fixed. AMBER99 partial charges of receptor and MOPAC output partial charges of ligands were utilized. Once the compound-binding site energy minimization was completed, receptor coordinates were fixed and a second energy minimization stage was performed leaving free to move only compound atoms. MMFF94 force field ${ }^{10-16}$ was applied. For each compound, the minimized docking poses were then rescored using London $d G$ and Affinity $d G$ scoring functions and the dock- $p K_{i}$ predictor. The latter tool allows estimating the $\mathrm{p} K_{\mathrm{i}}$ for each ligand using the "scoring.svl" script retrievable at the SVL exchange service (Chemical Computing Group, Inc. SVL exchange: http://svl.chemcomp.com). The algorithm is based on an empirical scoring function consisting of a directional hydrogen-bonding term, a directional hydrophobic interaction term, and an entropic term (ligand rotatable bonds immobilized in binding). The obtained $\mathrm{p} K_{\mathrm{i}}$ values must be considered as docking scores and not as prediction of binding affinity. For each compound, the top-score docking pose according to at least two out of three scoring functions were selected for final ligand-target interaction analysis.

References

1. C. Lambertucci, G. Cristalli, D. Dal Ben, D. D. Kachare, C. Bolcato, K. N. Klotz, G. Spalluto and R. Volpini, Purinergic Signal., 2007, 3, 339-346.
2. C. Lambertucci, I. Antonini, M. Buccioni, D. Dal Ben, D. D. Kachare, R. Volpini, K. N. Klotz and G. Cristalli, Bioorg. Med. Chem., 2009, 17, 2812-2822.
3. K. N. Klotz, J. Hessling, J. Hegler, C. Owman, B. Kull, B. B. Fredholm and M. J. Lohse, Naunyn-Schmiedeberg's Arch. Pharmacol., 1998, 357, 1-9.
4. A. De Lean, A. A. Hancock and R. J. Lefkowitz, Molecular Pharmacol., 1982, 21, 5-16.
5. Y. Cheng and W. H. Prusoff, Biochem. Pharmacol., 1973, 22, 3099-3108.
6. Molecular Operating Environment; C.C.G., Inc., 1255 University St., Suite 1600, Montreal, Quebec, Canada, H3B $3 X 3$.
7. J. J. Stewart, J. Comput. Aided Mol. Des., 1990, 4, 1-105.
8. V. P. Jaakola, M. T. Griffith, M. A. Hanson, V. Cherezov, E. Y. Chien, J. R. Lane, A. P. IJzerman and R. C. Stevens, Science, 2008, 322, 1211-1217.
9. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell and P. A. Kollman, J. Am. Chem. Soc., 1995, 117, 5179-5197.
10. T. A. Halgren, J. Comput. Chem., 1996, 17, 490-519.
11. T. A. Halgren, J. Comput. Chem., 1996, 17, 520-552.
12. T. A. Halgren, J. Comput. Chem., 1996, 17, 553-586.
13. T. A. Halgren, J. Comput. Chem., 1996, 17, 587-615.
14. T. A. Halgren and R. Nachbar, J. Comput. Chem., 1996, 17, 616-641.
15. T. A. Halgren, J. Comput. Chem., 1999, 20, 720-729.
16. T. A. Halgren, J. Comput. Chem., 1999, 20, 730-748.
