SUPPORTING INFORMATION

New selective $A_{2 A}$ agonists and A_{3} antagonists for human adenosine receptors. Synthesis, biological activity and molecular docking studies

Anna Rodríguez, ${ }^{\text {a }}$ Angel Guerrero,*a Hugo Gutierrez-de-Terán, ${ }^{\text {b }}$ David Rodríguez, ${ }^{\text {c }}$ José Brea, ${ }^{\text {d }}$ María I. Loza, ${ }^{\text {d }}$ Gloria Rosell, ${ }^{e}$ M. Pilar Bosch, ${ }^{* a}$
${ }^{\text {a D Dept. of Biological Chemistry and Molecular Modelling, IQAC (C.S.I.C.), 08034- }}$ Barcelona, Spain.
${ }^{b}$ Dept. of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden.

${ }^{c}$ Dept. of Biochemistry and Biophysics and Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden.
${ }^{d}$ Biofarma research group. Center of Research in Molecular Medicine and Chronic Diseases (CIMUS), 15782-Santiago de Compostela, Spain.
${ }^{e}$ Dept. of Pharmacology and Medicinal Chemistry (Unity Associated to CSIC), Fac. Pharmacy, University of Barcelona, Av. Diagonal, s/n, 08028-Barcelona, Spain.
*Corresponding authors. Tel.: +34 934006120 (A.G.), tel.: +34 934006171 (P.B.); fax: +34 932045904. E-mail: angel.guerrero@igac.csic.es (A. Guerrero);
pilar.bosch@iqac.csic.es (M. Pilar Bosch)

Experimental Section

General

NMR spectra were recorded at 300,400 , or 500 MHz for ${ }^{1} \mathrm{H}$ and 75 or 100 MHz for ${ }^{13} \mathrm{C}$ on a Varian Unity 300, Varian Mercury 400, or Varian Inova 500 spectrometer. The values are expressed in δ relative to the CHCl_{3} present in the solvent ($\delta 7.24 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ and $\delta 77.0 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$). Alternatively, when $\mathrm{CD}_{3} \mathrm{OD}$ was used, the values are expressed relative to $\mathrm{CD}_{3} \mathrm{OH}$ signal at 3.31 ppm for ${ }^{1} \mathrm{H}$ and 49.0 ppm for ${ }^{13} \mathrm{C}$. Coupling constants (J) are in Hz. High resolution mass spectra (HRMS) were run on a UPLC Acquity apparatus (Waters Corporation, Milford, MA, USA) coupled to a mass spectrometer LCT Premier XE (Waters) with a TOF analyzer using a $1.7 \mu \mathrm{~m}$ C18 (2.1 x 50 mm) column. Semipreparative HPLC was run on a Waters Alliance 2695 apparatus with a 996 UV photodiode array detector (Waters) using a Gemini $110 \AA$ A $5 \mu \mathrm{~m} \mathrm{C}-18$ ($250 \times 10 \mathrm{~mm}$) column (Phenomenex, Torrance, USA) connected to a Waters Fraction Collector III. For analytical HPLC, a Gemini 5520-65 $110 \AA$ A, $5 \mu \mathrm{~m} \mathrm{C}-18$ ($250 \times 4.6 \mathrm{~mm}$) (Phenomenex, Torrance, USA) column was used. All final compounds were checked for purity by analytical HPLC analysis and resulted to be $>98 \%$ pure.

All reactions were carried out under inert atmosphere. All reagents were purchased from Sigma-Aldrich (Spain) and were used without further purification. THF was distilled from sodium-benzophenone ketyl, MeOH and DMF were distilled from CaH_{2}, i$\mathrm{Pr}_{2} \mathrm{NEt}$ was distilled from KOH , and DBU and DMSO were distilled from CaH_{2}. For flash column chromatography, silica gel ($35-70 \mu \mathrm{~m}$) (SDS) was used.

General procedure for preparation of compounds 1-7.

2-[1-(R)-Methyl-2-(4-methoxyphenyl)ethylamino]-5'-(2-ethyl-2H-tetrazol-5-

yl)adenosine ((R)-6). A mixture of (R)-1-(4-methoxyphenyl)propan-2-amine (12f) (14 $\mathrm{mg}, 0.089 \mathrm{mmol})$, compound $8(15 \mathrm{mg}, 0.041 \mathrm{mmol})$, anhydrous DMSO ($38 \mu \mathrm{~L}$) and $i-$ $\mathrm{Pr}_{2} \mathrm{NEt}(0.11 \mathrm{~mL}, 0.639 \mathrm{mmol})$ was heated under Ar at $145{ }^{\circ} \mathrm{C}$ for 23 h . The mixture was cooled to room temperature, diluted with AcOEt (5 mL) and the volatile material was removed under vacuum. Then, AcOEt (5 mL) was added and the organic phase was washed with NaCl sat. soln. $(4 \times 10 \mathrm{~mL})$. After drying $\left(\mathrm{MgSO}_{4}\right)$ and filtered, the solvent was evaporated. The crude was purified by flash column chromatography eluting with $\mathrm{AcOEt}: \mathrm{MeOH}(95: 5)$ followed by chromatography on a reverse phase $\mathrm{C}-18$ Isolute column eluting with $\mathrm{H}_{2} \mathrm{O}: \mathrm{MeCN}: \mathrm{AcOH}$ mixture (75:25:0.1). After evaporation of the solvent and lyophilization, the residue was finally purified by semipreparative HPLC using mixtures of $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(50-95 \% \mathrm{MeOH})$ to afford compound (R) -6 ($6 \mathrm{mg}, 30 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$): $\delta 8.10$ (s, 1H, NCHN), 7.17 (d, J= $8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$), 6.82 (d, J = $9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$), 6.13 (d, J = $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$), 5.32 (d, J = $4.5 \mathrm{~Hz}, 1 \mathrm{H}$, NCCHO), 4.74 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHO}$), 4.71 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHO}$), 4.69 ($\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 4.23 (m, 1H, CH), $3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.89\left(\mathrm{dd}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{~J}^{\prime}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.64$ (dd, J = $13.2 \mathrm{~Hz}, \mathrm{~J}^{\prime}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $1.60\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 1.13 (d, J = $6.6 \mathrm{~Hz}, \mathrm{CH}_{3}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOD}$): $\delta 165.96,160.65,159.56,157.32$, $153.15,137.63,132.62,131.50,114.63,89.92,78.70,75.67,75.56,55.61,42.93$, 20.31, 14.69 ppm . HRMS m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{10} \mathrm{O}_{4} 497.2373\left(\mathrm{M}^{+}+\mathrm{H}\right)$, found 497.2378.

2-[1-(R,S)-Methyl-2-(4-fluorophenyl)ethylamino]-5'-(2-ethyl-2H-tetrazol-5-

yl)adenosine (2). HRMS m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{FN}_{10} \mathrm{O}_{3} 485.2173\left(\mathrm{M}^{+}+\mathrm{H}\right)$ found 485.2192 (Chart S1).

2-[1-(R, S)-Methyl-2-(4-chlorophenyl)ethylamino]-5'-(2-ethyl-2H-tetrazol-5-
yl)adenosine (3). ${ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD): $\delta 8.10$ (s, $1 \mathrm{H}, \mathrm{NCHN}$), 7.26 (d, J= 8.7 $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$), 7.20 (d, J = $9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$), 6.13 (d, J = $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$), 5.32 (d, J = $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCCHO}), 4.72$ (m, 1H, CHO), 4.70 (m, 1H, CHO), 4.69 (q, 2H, J = 7.5 Hz $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $4.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.89\left(\mathrm{dd}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{~J}^{\prime}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.72$ (dd, J= $\left.13.2 \mathrm{~Hz}, \mathrm{~J}^{\prime}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right)_{2}$, $1.60\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.13(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right) \mathrm{ppm}$. HRMS m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{CIN}_{10} \mathrm{O}_{3} 499.1721\left(\mathrm{M}^{+}+\mathrm{H}\right)$ found 499.1698.

2-[1-(R, S)-Methyl-2-(4-bromophenyl)ethylamino]-5'-(2-ethyl-2H-tetrazol-5-
yl)adenosine (4). ${ }^{1} \mathrm{H}$ NMR (500 MHz , MeOD): $\delta 8.10$ (s, 1H, NCHN), 7.40 ($\mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$), $7.20\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$), 6.13 (d, J = $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$), 5.32 (d, J = $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCCHO}), 4.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 4.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 4.70(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $4.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.94\left(\mathrm{dd}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{~J}^{\prime}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.70(\mathrm{dd}, \mathrm{J}=$ $\left.13.2 \mathrm{~Hz}, \mathrm{~J}^{\prime}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right)_{2}$, $1.60\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.15(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right)$ ppm. HRMS m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BrN}_{10} \mathrm{O}_{3} 543.1216\left(\mathrm{M}^{+}-\mathrm{H}\right)$ found 543.1236 .

2-[1-(R, S)-Methyl-2-(4-trifluoromethylphenyl)ethylamino]-5'-(2-ethyl-2H-tetrazol-5yl)adenosine (5). HRMS m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{10} \mathrm{O}_{3} 535.2141\left(\mathrm{M}^{+}+\mathrm{H}\right)$ found 535.2154 (Chart S1).

2-[1-(R, S)-Methyl-2-(4-methoxyphenyl)ethylamino]-5’-(2-ethyl-2H-tetrazol-5-

$\mathbf{y l}$)adenosine ($\boldsymbol{R}, \mathbf{S}$)-6). The NMR data were identical to the corresponding compound (R)-6. HRMS m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{10} \mathrm{O}_{4} 497.2373\left(\mathrm{M}^{+}+\mathrm{H}\right)$ found 497. 2379.

2-[1-(S)-Methyl-2-(4-methoxyphenyl)ethylamino]-5'-(2-ethyl-2H-tetrazol-5$\mathbf{y l})$ adenosine ((S)-6). The NMR data were identical to the corresponding compound (R)-6. HRMS m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{10} \mathrm{O}_{4} 497.2373\left(\mathrm{M}^{+}+\mathrm{H}\right)$ found 497. 2357.

2-[1-(R, S)-Methyl-2-(3-methoxyphenyl)ethylamino]-5'-(2-ethyl-2H-tetrazol-5-
yl)adenosine (R,S)-7). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$): $\delta 8.10$ (s, 1H, NCHN), 7.21 (t, J= $6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$), $6.75\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 6.15(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 5.30(\mathrm{~d}, \mathrm{~J}=4.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCCHO}$), 4.72 (m, 1H, CHO), 4.71 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHO}$), $4.69(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.89\left(\mathrm{dd}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{~J}^{\prime}=5.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CH_{2}), 2.64 (dd, J = $13.2 \mathrm{~Hz}, \mathrm{~J}^{\prime}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $1.61\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), $1.15\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. HRMS m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{10} \mathrm{O}_{4} 497.2373\left(\mathrm{M}^{+}+\mathrm{H}\right)$ found 497. 2364.

2-Chloro-5'-(2-ethyl-2H-tetrazol-5-yl)adenosine (8). This compound was prepared as previously described. ${ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , DMSO), $\delta: 8.40$ (s, $1 \mathrm{H}, \mathrm{NCHN}$), 7.81 (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.04 (d, J=5.4 Hz, 1H, CHO), 5.78 (dd, J=6.9 Hz, J'=6 Hz, 1H, CHOH), 5.21 (d, J=4.2 Hz, 1H, CHCN), 4.79 (q, J=5.1 Hz, 1H, OH), 4.72 (q, J=7.5 Hz, 2H, CH2CH3), $4.57(\mathrm{q}, \mathrm{J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.29\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}$, d_{6}-DMSO), $\delta: 164.31,156.99,153.44,150.75,139.65,118.17,87.79,77.40,73.97$, 73.69, 48.41, 14.25 ppm .

2-Dimethylamino 5'-(2-ethyl-2H-tetrazol-5-yl)adenosine (9). A mixture of compound 8 ($50 \mathrm{mg}, 0.136 \mathrm{mmol}$), 1-phenylpropan-2-amine (12a) ($40 \mathrm{mg}, 0.299 \mathrm{mmol}$), $i-\mathrm{Pr}_{2} \mathrm{NEt}$ ($240 \mu \mathrm{~L}, 1.36 \mathrm{mmol}$), DMF (1.3 mL) and Nal as catalyst was heated under Ar at $145^{\circ} \mathrm{C}$ for 70 h . The mixture was treated as above and the residue was purified through an Isolute $\mathrm{C}-18$ cartridge followed by semipreparative HPLC using mixtures of $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ ($50-95 \% \mathrm{MeOH}$) to give compound 9 ($21 \mathrm{mg}, 41 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$): δ 8.10 (s, 1H, NCHN), 6.13 (d, J = $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$), 5.29 (d, J = 5 Hz, 1H, CHO), 4.93 (t, J = 5 Hz, 1H, CH3 $), 4.79(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 4.72\left(\mathrm{dd}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{~J}^{\prime}=14.5 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.14\left(\mathrm{~S}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.62\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, MeOD): $\delta 164.2,159.5,155.6,151.8,136.1,112.6,87.5,76.5,73.7,73.1,48.2$, 37.1, 14.2 ppm . HRMS m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{10} \mathrm{O}_{3} 375.1642\left(\mathrm{M}^{+}-\mathrm{H}\right)$ found 375.1635.

2-(1-Methyl-2-phenylethylamino)adenosine (10). A mixture of compound 13 (25 mg , 0.083 mmol), 1-phenylpropan-2-amine (12a) ($25 \mathrm{mg}, 0.183 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(190 \mu \mathrm{~L}, 1.33$ $\mathrm{mmol})$, DMSO $(50 \mu \mathrm{~L})$ and Nal as catalyst was heated under Ar at $145^{\circ} \mathrm{C}$ for 48 h . The mixture was cooled to room temperature, diluted with AcOEt (5 mL), and the volatile materials were removed under vacuum. The residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, washed with brine ($3 \times 5 \mathrm{~mL}$) and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$. After filtering, the solvent was stripped off. The residue was purified through an Isolute column C18 cartridge, followed by semipreparative HPLC using an isocratic mixture of $\mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}$ ($40: 60$) to afford compound 10 ($11.9 \mathrm{mg}, 36 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 7.90$ (s, 1H, NCHN), 7.17 (s, 1H, NH), 6.72 (s, 2H, NH2), 6.04 (s, 1H, CHO), 5.73 (d, J = 5.6 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHO}$), 5.37 (m, 1H, CHO), 5.12 (s, 2H, OH), 4.57 (m, 1H, CHO), 4.12 (s, 2H, CH_{2}), 3.88 (s, 1H, OH), $3.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $2.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 106\left(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$ ppm. HRMS m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{4} 399.1781\left(\mathrm{M}^{+}-\mathrm{H}\right)$ found 399.1766.

Radioligand binding assays

Radioligand binding competition assays were performed in vitro using $A_{1}, A_{2 A}, A_{2 B}$ and A_{3} human receptors expressed in transfected $\mathrm{CHO}\left(\mathrm{A}_{1}\right)$, HeLa $\left(\mathrm{A}_{2 \mathrm{~A}}\right.$ and $\left.\mathrm{A}_{3}\right)$ and HEK$293\left(A_{2 B}\right)$ cells. The experimental conditions used are summarized in Table 1S. In each instance aliquots of membranes ($15 \mu \mathrm{~g}$ for $\mathrm{A}_{1}, 8 \mu \mathrm{~g}$ for $\mathrm{A}_{2 \mathrm{~A}}, 40 \mu \mathrm{~g}$ for $\mathrm{A}_{2 B}$ and $100 \mu \mathrm{~g}$ for A_{3}) in buffer A (see Table 1S) were incubated for the specified period at $25{ }^{\circ} \mathrm{C}$ with the radioligand ($2-35 \mathrm{nM}$) and 6 different concentrations (ranging from 0.1 nM to $1 \mu \mathrm{M}$) of the test molecule or standard in a final volume of $200 \mu \mathrm{l}$. The binding reaction was stopped by rapid filtration in a multiscreen manifold system (Millipore lbérica, Madrid, Spain). Unbound radioligand was removed by washing $4 x$ with 250μ of ice-cold buffer B for $A_{1}, A_{2 A}$ and $A_{2 B}$ receptors, and $6 x 250 \mu$ l of ice-cold buffer B for A_{3} receptor (see Table 1S). Non-specific binding was determined using a $50 \mu \mathrm{M}$ NECA solution for $\mathrm{A}_{2 \mathrm{~A}}$ receptors and 10-1000 $\mu \mathrm{M}$ R-PIA solution for $\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}$ and A_{3} receptors. Radioactivity retained on filters was determined by liquid scintillation counting using Universol (ICN

Elemental Composition Report

Single Mass Analysis

Tolerance $=5.0$ PPM $/$ DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron lons
43 formula(e) evaluated with 2 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: } 15-25 & \mathrm{H}: ~ 20-30 & \text { N: 8-11 } & \text { O: 0-4 } & \text { F: 0-2 }\end{array}$
AR136c
AR136c 29 (0.297) $\mathrm{Cm}(27: 33) \quad$ 1: TOF MS ES +
$1.00 \mathrm{e}+005$

Elemental Composition Report

Single Mass Analysis

Tolerance $=10.0$ PPM $/$ DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
53 formula(e) evaluated with 2 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: 20-24 } & \mathrm{H}: 20-30 & \mathrm{~N}: ~ 8-12 & \mathrm{O}: 0-3 & \mathrm{~F}: 0-4\end{array}$
AR138
AR138 $12(0.187) \mathrm{Cm}(12: 13) \quad$ 2: TOF MS ES +

Minimum: Maximum:		-1.5								
		5.0	10.0	50.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula			
535.2154	535.2141	1.3	2.4	13.5	244.1	0.0				
	535.2193	-3.9	-7.3	13.5	248.4	4.3	C24 H27	N8		

Chart S1

Biochemicals, Inc.). The binding affinities were determined using [$\left.{ }^{3} \mathrm{H}\right]$-DPCPX (120 $\mathrm{Ci} / \mathrm{mmol}$; NEN-Perkin Elmer Life Sciences, Madrid, Spain) as the radioligand for A_{1} and $\left.\mathrm{A}_{2 B},{ }^{3} \mathrm{H}\right]$-ZM241385 ($50 \mathrm{Ci} / \mathrm{mmol}$; ARC-ITISA, Madrid, Spain) for $\mathrm{A}_{2 \mathrm{~A}}$ and $\left[{ }^{3} \mathrm{H}\right]$-NECA ($18.6 \mathrm{Ci} / \mathrm{mmol}$; NEN-Perkin Elmer Life Sciences, Madrid, Spain) for A_{3}. The inhibition constant $\left(\mathrm{K}_{\mathrm{i}}\right)$ of each compound was calculated by the expression $\mathrm{K}_{\mathrm{i}}=\mathrm{IC}_{50} /\left(1+\left(\mathrm{C} / \mathrm{K}_{\mathrm{D}}\right)\right)$, where IC_{50} is the concentration of compound that displaces the binding of radioligand by $50 \%, \mathrm{C}$ is the free concentration of radioligand and K_{D} is the apparent dissociation constant of each radioligand.

cAMP assays

cAMP assays were performed on transfected adenosine receptors using a cAMP enzyme immunoassay kit (GE-Healthcare). Because $A_{2 A}$ are Gs-coupled receptors, competition curves were performed based on the NECA-induced cAMP accumulation. In turn, A_{3} are Gi/o-coupled receptors and, therefore, competition curves were obtained over the NECA-induced inhibition of the cAMP accumulation produced by forskolin.

Human $A_{2 A}$ receptors

CHO-A $A_{2 A}$ cells were seeded (10000 cells/well) in 96 -well culture plates and incubated at $37^{\circ} \mathrm{C}$ in an atmosphere with $5 \% \mathrm{CO}_{2}$ in Dulbecco's modified Eagle's medium nutrient mixture F-12 (DMEM F-12), containing 10% fetal calf serum (FCS) and 1% Lglutamine. Cells were washed $3 x$ with 200μ of assay medium (DMEM-F12 and 25 mM HEPES $\mathrm{pH}=7.4$), and pre-incubated with the assay medium containing $30 \mu \mathrm{M}$ Rolipram and the test compounds at $37^{\circ} \mathrm{C}$ for 15 min . NECA was incubated for 15 min at $37^{\circ} \mathrm{C}$ (total incubation time 30 min). The reaction was stopped with the lysis buffer supplied with the kit and detection of intracellular cAMP was performed by the enzyme immunoassay at 450 nm in an M1000 Pro Reader (Tecan). Data were fitted by nonlinear regression using GraphPad Prism v2.01 (GraphPad Software).

Human A_{3} receptors

CHO-A ${ }_{3}$ cells were seeded (20000 cells/well) in 96 -well culture plates and incubated at $37^{\circ} \mathrm{C}$ in an atmosphere with $5 \% \mathrm{CO}_{2}$ Dulbecco's Medium Nutrient F-12 (DMEM F-12), containing 10% FCS and 1% L-glutamine, as above. Cells were washed and preincubated with the test compounds as cited for $\mathrm{A}_{2 \mathrm{~A}}$ receptors. NECA was incubated also at $37^{\circ} \mathrm{C}$ for 15 min and forskolin ($10 \mu \mathrm{M}$) was also incubated for 3 min (total incubation time 33 min). The reaction was stopped with the lysis buffer supplied with the kit and the enzyme immunoassay performed as cited above. Data were also fitted by non-linear regression using GraphPad Prism v2.01.

Table 1S Experimental conditions used for radioligand binding assays using $A_{1}, A_{2 A}$, $\mathrm{A}_{2 \mathrm{~B}}$, and A_{3} human receptors.

	A_{1}	$\mathrm{A}_{2 \mathrm{~A}}$	$\mathrm{A}_{2 \mathrm{~B}}$	A_{3}
Cell line	$\mathrm{CHO}-\mathrm{A}_{1}$	HeLa- ${ }_{2 \text { 2A }}$	HEK-A ${ }_{2 B}$	$\mathrm{HeLa}-\mathrm{A}_{3}$
Buffer A	20 mM Hepes, $100 \mathrm{mM} \mathrm{NaCl}, 10$ $\mathrm{mM} \mathrm{MgCl}, 2$ units/ml adenosine deaminase ($\mathrm{pH}=7.4$)	50 mM Tris- HCl , 1 mM EDTA, 10 $\mathrm{mM} \mathrm{MgCl}, 2$ units/ml adenosine deaminase ($\mathrm{pH}=7.4$)	50 mM Tris- HCl , 1 mM EDTA, 5 mM $\mathrm{MgCl}_{2}, 100 \mu \mathrm{~g} / \mathrm{ml}$ Bacitracin, 2 units/ml adenosine deaminase ($\mathrm{pH}=6.5$)	50 mM Tris- HCl , 1 mM EDTA, 5 mM MgCl , 2 units/ml adenosine deaminase ($\mathrm{pH}=7.4$)
Buffer B	20 mM Hepes, $100 \mathrm{mM} \mathrm{NaCl}, 10$ mM MgCl , ($\mathrm{pH}=7.4$)	$\begin{gathered} 50 \mathrm{mM} \text { Tris-HCl, } \\ 1 \mathrm{mM} \mathrm{EDTA}, 10 \\ \mathrm{mM} \mathrm{MgCl} \\ (\mathrm{pH}=7.4) \end{gathered}$	50 mM Tris-HCl 1 mM EDTA, 5 mM $\mathrm{MgCl}_{2}(\mathrm{pH}=6.5)$	$50 \mathrm{mM} \text { Tris- } \mathrm{HCl}$ $(\mathrm{pH}=7.4)$
Plate Radioligand	$\begin{gathered} \text { GF/C } \\ {\left[{ }^{3} \mathrm{H}\right] \mathrm{DPCPX}} \\ 2 \mathrm{nM} \end{gathered}$	$\begin{gathered} \text { GF/C } \\ {\left[{ }^{3} \mathrm{H}\right] \mathrm{ZM} 241385} \\ 3 \mathrm{nM} \end{gathered}$	$\begin{gathered} \text { GF/C } \\ {\left[{ }^{3} \mathrm{H}\right] \mathrm{DPCPX}} \\ 25 \mathrm{nM} \end{gathered}$	$\begin{gathered} \text { GF/B } \\ {\left[\begin{array}{c} 3 \\ H \end{array} \mathrm{NECA}\right.} \\ 30 \mathrm{nM} \end{gathered}$
Non-specific binding	$10 \mu \mathrm{M}(\mathrm{R})$-PIA	$50 \mu \mathrm{M} \mathrm{NECA}$	$1000 \mu \mathrm{M}(\mathrm{R})$-PIA	$100 \mu \mathrm{M}(\mathrm{R})$-PIA
Incubation	$25^{\circ} \mathrm{C} / 60 \mathrm{~min}$	$25^{\circ} \mathrm{C} / 30 \mathrm{~min}$	$25^{\circ} \mathrm{C} / 30 \mathrm{~min}$	$25^{\circ} \mathrm{C} / 180 \mathrm{~min}$

Molecular modelling

The three available agonist-bound crystal structures of the $A_{2 A} A R$ were initially considered, i.e. receptors co-crystallized with adenosine (PDB code 2YDO), 5'- N -ethylcarboxamidoadenosine (NECA, PDB code 2YDV) and UK432097 (a derivative of NECA with bulky N6 and C2 substitutions, PDB code 3QAK). A first docking exploration with the agonist series reported ${ }^{1}$ (Fig. S1), revealed a more consistent binding mode when using the NECA-bound complex, probably due to the more enclosed conformation of the extracellular loops compared to the UK432097-bound structure.
The $A_{2 A} A R-N E C A$ complex was equilibrated using the molecular dynamics (MD) protocol implemented in GPCR-ModSim (http://gpcr-modsim.org), ${ }^{2}$ which is here explained in brief. First, missing protein atoms and residue protonation states were modelled for the $A_{2 A} A R$ structure with tools from the Schrödinger software suite. ${ }^{3}$ The coordinates of the crystallographic receptor, ligand and water molecules observed in the binding cavity were then prepared to be simulated in GROMACS v4.0.5. ${ }^{4}$ The complex was embedded in a pre-equilibrated hydrated POPC (1-palmitoyl-2oleoylphosphatidylcholine) lipid bilayer, following the appropriate orientation adopted by GPCRs in the membrane. The system was then neutralized with counterions, and arranged in a simulation box with a hexagonal prism-shaped geometry comprising $\sim 50,000$ atoms (74% solvent molecules, 15% lipids, and 11% protein and ligand atoms). The OPLS all-atom (OPLS-AA) force field ${ }^{5}$ was used for the protein, the corresponding parameters were generated for the ligand with Macromodel, ${ }^{3}$ and the
double-pairlist half-epsilon method ${ }^{6}$ was followed to make the Berger united-atom parameters used for the POPC lipids ${ }^{7}$ compatible with the rest of the system. After a steepest-descent energy minimization, 5 ns of partially-restrained MD simulation were performed with GROMACS4.0.5. ${ }^{4}$ This equilibration protocol consists of a first stage of 2.5 ns where positional restraints on the heavy atoms of the protein, ligand, and crystallographic waters are gradually reduced, followed by 2.5 ns with only weak positional restraints on the protein $\mathrm{C} \alpha$ atoms. Very small rearrangements were observed for NECA and binding site residues, while water molecules further optimized an internal-ligand and receptor-ligand interaction networks (Fig. S2).

Compounds described in the text were docked to the MD-equilibrated $A_{2 A} A R$ receptor, including two binding site water molecules, with the protein-ligand docking program GOLD version 4.1. ${ }^{8}$ The 3D conformers of each ligand, including their possible R and S enantiomers, were built and optimized using the Maestro graphical interface and the LigPrep utility from the Schrödinger suite. ${ }^{3}$ Twenty genetic algorithm (GA) runs were performed with GOLD. High accuracy search parameters were used, allowing full flexibility of the ligand, e.g. flipping of amide bonds. A search sphere with a radius of 15 \AA a was centered on the side chain (CD1) of Ile274 ${ }^{7.39}$, which comprises the agonist binding site observed in active-like structures of the $\mathrm{A}_{2 A} A R$. Ligand conformations from docking experiments were selected according to a combination of their predicted binding energies with the ChemScore scoring function, and the population (convergence) of the solutions according to an RMSD clustering criteria of $1 \AA$. Finally, the ligands were energy-minimized in the binding site with Macromodel, ${ }^{3}$ with the crystallographic water and receptor coordinates held rigid.

Fig. S1. Predicted binding mode for compound $\mathbf{5}$ in Bosch et al. ${ }^{1}$

Fig. S2. MD equilibration of the $A_{2 A} A R-N E C A$ crystallographic coordinates. Binding site residues and NECA are represented in lines and sticks for the pre- and post-MD coordinates, respectively. The crystallographic waters included in the simulations are shown in spheres, while their MD-refined coordinates are represented in sticks.

Abbreviations

UPLC = ultra-performance liquid chromatography; TOF = time of flight; $i-\mathrm{Pr}_{2} \mathrm{NEt}=$ diisopropylethylamine; DBU = 1,8-diazabicyclo[5,4,0]undec-7-ene; DMSO = dimethyl sulfoxide; DMF = N,N-dimethyl formamide; cAMP = 3'-5' cyclic adenosine monophosphate; NECA = 5'-(N-ethylcarboxamido)adenosine; DPCPX = 1,3-dipropyl-8cyclopentylxanthine; ZM241385 $=\quad$ (7-amino-2-(2-furyl)-5-[2-(4-hydroxyphenyl)ethyl]amino-[1,2,4]-triazolo[1,5-a][1,3,5]triazine; GPCR = G-protein coupled receptor.

REFERENCES

1 M. P. Bosch, F. Campos, I. Niubo, G. Rosell, J. L. Diaz, J. Brea, M. I. Loza and A. Guerrero, J. Med. Chem., 2004, 47, 4041.
2 H. Gutiérrez de Terán, X. Bello and D. Rodríguez, Biochem. Soc. Trans., 2013, 41, 205.

3 L. L. C. Schrödinger, New York, 2009.
4 B. Hess, C. Kutzner, D. van der Spoel and E. Lindahl, J. Chem. Theory Comput., 2008, 4, 435.
5 W. L. Jorgensen, S. Maxwell and J. Tirado-Rives, J. Am. Chem. Soc., 1996, 118, 11225.

6 N. Chakrabarti, C. Neale, J. Payandeh, E. F. Pai and R. Pomès, Biophys. J., 2010, 98, 784.
7 O. Berger, O. Edholm and F. Jähnig, Biophys. J., 1997, 72, 2002.
8 M. L. Verdonk, J. C. Cole, M. J. Hartshorn, C. W. Murray and R. D. Taylor, Proteins, 2003, 52, 609.

