

Fig S1. The performance of the na $\ddot{\nu}e$ Bayesian models at different activity thresholds. ECFP6 and ECFP4 represent the fingerprints using for building models. According to these results, all the values suddenly increase and stabilize after 5 μ M. Therefore, 5 μ M is the reasonable activity threshold.

Table S1. The details of performance parameters for the best RP models with the combination of different fingerprints and MPs.

Models	Training set			Test set		
	Q_a	Q_{na}	Q	Q_a	Q_{na}	Q
MP ^a _depth6 ^b	0.461	0.890	0.671	0.406	0.774	0.573
ECFP_4_depth4+MP	0.870	0.967	0. 938	0.971	0.940	0.949
ECFP_6_depth4+MP	0.848	0.971	0.932	0.944	0.951	0.949
EPFP_4_depth3+MP	0.789	0.978	0.912	0.756	0.944	0.872
EPFP_6_depth4+MP	0.841	0.971	0.929	0.875	0.961	0.932
FCFP_4_depth3+MP	0.880	0.971	0.943	0.925	0.987	0.966
FCFP_6_depth3+MP	0.880	0.971	0.943	0.925	0.987	0.966
FPFP_4_depth5+MP	0.835	0.975	0.929	0.814	0.959	0.906
FPFP_6_depth3+MP	0.769	0.961	0.895	0.857	0.973	0.932
LCFP_4_depth3+MP	0.842	0.975	0.932	0.872	0.949	0.923
LCFP_6_depth3+MP	0.836	0.979	0.932	0.875	0.961	0.932
LPFP_4_depth3+MP	0.839	0.967	0.926	0. 923	0.974	0.957
LPFP_6_depth3+MP	0.855	0.967	0. 932	0. 923	0.974	0.957

^aMP: the 13 descriptors calculated with DS 2.5.5. ^bDepth*: the best tree depth for the corresponding model.

Table S2. The details of performance parameters for the best RP and NB models

Models	Training set				Test set			
	Q_a	Q_{na}	$\boldsymbol{\varrho}$		Q_a	Q_{na}	Q	
RP_FCFP_4_depth3 ^b +MP ^a	0.880	0. 971	0. 943	•	0. 925	0. 987	0.966	
RP_FCFP_6_depth3+MP	0.880	0.971	0.943		0.925	0.987	0.966	
NB_FPFP_6+MP	0.893	0. 992	0.960		0.974	1.000	0.991	
NB_FPFP_10+MP	0.870	0. 992	0. 952		0.974	1.000	0.991	

^aMP: the 13 descriptors calculated with DS 2.5.5. ^bDepth*: the best tree depth for the corresponding model.

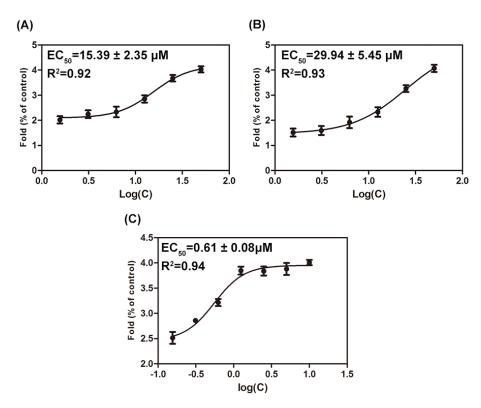


Fig S2. The activation curves of compound 10 (A), compound 13 (B) and GW4064 (C). The EC_{50} values are presented as the mean \pm SE.